

University of Tehran

Faculty of Engineering
Electrical and Computer Engineering Department

Pattern Recognition Project

Two-dimensional Shape Classification
Implementation and Evaluation in Noise-free and

Noisy Outlier Contaminated Environments

FARSHAD SHIRANI
FALL – 2003

Abstract

In this project we consider the problem of

classifying objects using their two-dimensional
silhouettes in noise-free environments as well as
environments generating large aberrant observations
(outliers). We concentrate on fast classification
algorithms for near real-time applications. In order to
obtain acceptable results in both environments, two
independent classifying methods are presented and
examined through three sets of shape. Both these
methods are generally based on the use of circular
autoregressive (CAR) model parameters which
represent the shape of the boundaries detected in
digitized binary images of the objects. Robust
parameter estimation and lag selection procedures are
introduced and used in contaminated environment. All
object identification techniques are insensitive to object
size and orientation.

All techniques and algorithms are implemented
with MATLAB and contaminations are generated
artificially.

1. Introduction

 Recognizing two or three dimensional objects is
a central problem in machine vision, with
applications to aircraft identification, medical
diagnosis from cell characteristics, hand written
character recognition, automatic inspection of
industrial processes, and so on. We focus on
techniques based on two dimensional boundary
information of shapes whose boundary does not cross
itself. Shape information is obtained by the use of a
circular autoregressive (CAR) model representing the
objects boundary.
 Section 2 describes the boundary modeling used
in our all algorithms. In section 3 the classification
problem in noise-free environment is considered. The
feature extraction procedure based on model
parameter estimates is carried out in section 3.1. Two
fast classifiers are introduced in section 3.2 and their
performance is tested in section 3.3. Section 3.4
examines the ability of our approach in recognizing
deformed shapes.
 Classification in contaminated environment is
the subject of section 4. The model is introduced in
section 4.1. Robust parameter estimation and lag
selection algorithms are presented in sections 4.2 and
4.3. A new classification approach based on spectral
functions estimated from model parameters is
explained in section 4.4. In section 4.5 we indicate
the insensitivity of robust methods to outliers through
some spectral function diagrams. The classification
algorithms are also tested in this section. Finally, we
summarize the conclusions in section 5.

2. The Boundary Model

 Our shape description technique is based on the
use of a full circular autoregressive (CAR) model of
order M in noise-free environment and a circular sub-

set autoregressive (CSAR) model in contaminated
environment. An autoregressive model is a
parametric equation that expresses each sample of an
ordered set of data samples as a linear combination of
a specified number of previous samples from the set
plus an error term.
 The autoregressive model can be used to express
a polygonal approximation of a two-dimensional
object boundary. With appropriate boundary
sampling, functions of the model parameters are
invariant to rotation, translation, and scaling of the
boundary and can be used as shape descriptors.

In order to obtain CAR model parameters of a
given shape, we must first extract its boundary. Then
the boundary is approximated by a sequence of
ordered samples and represented by a set of CAR
model parameters. These procedures are what we are
going to explain in sections 2.1-2.3.

2.1. Boundary Extraction

 Suppose we have an isolated black and white
image of an object (e.g. black object in a white
background). Driving this image from the original
image taken by camera might need some
preprocessing that is not the subject of this project. In
order to extract the boundary of this image we
suggest this simple algorithm

1) Find the topmost pixel of the object and
store it as a boundary point. Also choose
this point as starting point.

2) Define eight different directions to access all
neighbor pixels of current point and order
them in clockwise direction starting at left
direction (see Fig. 1). Choose direction (1)
as current direction.

3) Check the current point neighbor pixel in
current direction.
If it does not belong to the object, check the
pixel in next direction. Repeat this until you
reach to a pixel which belongs to the object.
Store this pixel as a boundary point and
choose its access direction as current
direction. Also choose this point as current
point.
Else if it belongs to the object, check the
pixel in previous direction. Repeat this until
you reach to a pixel not in the object. Store
the last detected object pixel as a boundary
pixel and choose its access direction as
current direction. Also choose this point as
current point.

4) If the current point is not the starting point,
go back to step 3), other wise delete this last
stored point and terminate the program.

This algorithm is shown graphically for a few steps
in Fig. 1. As we can see in this figure, pixels around
the current pixel are checked one by one until an Off-
to-On or On-to-Off transition occurs in the state of

1

d. Because a change in sectors can happen
between the last boundary point and the first
one (interpreting circularly), we add the first
(starting) boundary point to the end of the
sequence of boundary points if this point is
not on a horizontal or vertical radius vector.
In this way we are able to detect the above-
mentioned intersection too.

We obtain our desired boundary representing

time series by implementing the algorithm described
in this section and are able to construct the shape
autoregressive model. This is the subject which is
discussed in next section.

2.3. Mathematical modeling of the boundary
[3]

In this section we consider the analyses of the
one-dimensional time series {r(1), r(2), . . . , r(T)}
derived from the methods discussed in previous
sections. Since the boundary is closed,

eger k r(k) , T)r(k int∀=+ (1)

we fit a particular type of CAR model to this data
(see [3]):

Ttwrr t

m

j
ttjt j

,,1
1

][L=++= ∑
=

− βθα (2)

where
 tr = current radius vector length
][jttr − = the radius vector length detected tj

 radius vectors before the current tr
 (collectively called lag terms). Here
 [x] is x interpreted periodically on the
 integers 1, 2, …, N
 mθθ ,,1 L = unknown lag coefficients to be

estimated from the observed time
series

 m = model order
 β = unknown constant to be estimated

 twβ = current error, noise, residual

 α = unknown constant to be estimated
 { }tw = a random sequence of independent

zero-mean samples with unit variance:
E(wi) = 0, E(wiwj) = δij

Since the variance of tw is one, the β factor

transforms the unit variance random variable tw to a
random variable with variance β .

The unknown model parameters),,(βα θ in
Eq. (2) are estimated from the observed time series.
The popular estimation of the parameters is the ML

estimation. If we let),,(∗∗∗ βα θ be the ML

estimation of the parameters),,(βα θ , then ∗θ can
be computed by a gradient algorithm. For reducing
the computations in the estimation procedure, the use
of the following LS estimation is suggested by [3].

,)ˆ,ˆ(
1

1

1

1
1

= ∑∑

=
−

−

=
−

T

t
tt

T

t

T
1-tt

T ruuuθ α (3)

∑ ∑ ∑
= = =

−−

−−=−=

T

t

T

t

m

j
ttjtt

T
t j

rr
T

r
T 1 1

2

1

2
1

ˆˆ1))ˆ,ˆ((1ˆ θααβ uθ

 (4)
where
)1,(11

T
t

T
t −− = zu , and T

ttttt m
rr),,(

11 −−− = Lz

Also θ̂ can be obtained from the well-known
Yule-Walker equation which is described in section
4, and then α̂ can be written as

∑ ∑
= =

−

−=−=

T

t

m

j
jt

T
t rr

T 1 1
1 1)ˆ(1ˆ θα zθ (5)

This Equation shows that α is proportional to the
mean radius vector length, r and is therefore a
descriptor of the shape size. For large T, this LS
estimates tend to ML estimates asymptotically.
 The boundary representation and modeling
schemes that we have explained so far, are
insensitive to object translations, and to rotation of
the object and variations in the starting sample over
angles that are integral multiples of 2π/T. It can also
be shown that the CAR model Parameters, θ , are not
dependent on the size of the object (refer to [3] for
the proof), where as the parameters α and β are
directly proportional to size. However the function

βα , which can be interpreted as a signal-to-noise
ratio, is size independent. These invariant properties
of the parameters),(βαθ make them attractive
candidates as shape features for recognition purposes.
This idea is realized in section 3.1.

3.Classification in noise-free environment

Having constructed the mathematical shape
models, we are now able to develop a shape classifier
based on the features that are extracted from the
shape boundaries. The feature extraction procedure is
described in section 3.1. Two fast classification
algorithms which are suitable for near real-time
applications are introduced and examined using a
number of realistic machine parts and aircraft
silhouettes, and a set of four letters of alphabet. All
these three pattern sets are shown in Figs. 8, 9, and
10. At last the ability of the algorithms in recognizing
deformed shapes is assessed in section 3.4.

5

This is the same model we used in section 2.3
where µ is equivalent to α and 2

Zσ is equivalent to β.
In noise-free environment we considered a full
model of order m,),m),,((J TK21= . Here, in the
case of sub-set model, we employ a robust lag
selection procedure to find a near optimum lag
structure J for each template. This is presented in
section 4.3. Particular robust parameter estimations
are also introduced in section 4.2 to mitigate the
effect of outliers.

4.2. Robust parameter estimation

Consider a circular sub-set auto regression
with lags J and parameters T

J(j)J J),j(∈= φφ . We
estimate the latter from a single data record

,T),,t(YY t K1== using the Yule-Walker equations.

These are JJJ r̂ˆˆ =φR , where),|),(|ˆ(ˆ JjijirJ ∈−=R
and));(ˆ(ˆ JiirrJ ∈= . When non-robust procedures
are required,)0),(ˆ(≥uur is the sample covariance
function

∑
=

+ −−=
T

t
utt YY

T
ur

1
][)ˆ)(ˆ(1)(ˆ µµ (8)

In this case the estimated parameters Jφ̂ are exactly
equal to what is obtained by the formulas presented
in section 2.3. Here, to mitigate the effect of
outliers, we use the robust estimate of the auto
covariance function given by

0;
)0(ˆ
)(ˆˆ)(ˆ 2 ≥= u

c
ucur Xσ (9)

where

 −

 −= +

=
∑

X

ut
fH

T

t X

t
fH

YY
T

uc
σ

µ
ψ

σ
µψ

ˆ
ˆ

ˆ
ˆ1)(ˆ][

,
1

, . (10)

For non-robust procedures, µ̂ is estimated by the
sample mean value Y , and the sample standard
deviation is used for Xσ̂ . The robust alternatives
for these parameters are

),,,1,(medianˆ TtYt L==µ (11)
()TtYtX ,,1,ˆmedian483.1ˆ L=−= µσ . (12)

)(, xfHψ is Huber's function

>
≤

=
fxxf
fxx

xfH ||)(sign
||

)(,ψ (13)

where f is a parameter chosen appropriately for

each template.
 We take the usual regression estimate

−

−−

−= ∑
∈Jj

JZ jrjr
jT
jT)(ˆ)(ˆ)0(ˆ

1)(card2
)(cardˆ 2 φσ , (14)

where card(j) is the number of lags in the model.
This formula differs from (4) by the factor

−−

−
1)(card2

)(card
jT
jT ,

which is nearly equal to 1 when T is large enough.

4.3. Robust lag selection

 In this section we show how the lags of a sub-
set auto regression can be determined from N
multiple data records),,1,(NkYk K= . The kth
record),,(,1, kTkkk YYY K= has Tk elements. In our
experiment there are N = Ni data records associated
with the ith class.
 The robust Yule-Walker equations are used to
estimate the parameters of candidate models in each
data record. These estimates averaged over N data
records make the class parameters 2~

Zσ and Jφ~

()∑
=

=
N

k

k
ZZ N 1

2)(2 ˆ1~ σσ (15)

∑
=

=
N

k

k
JJ N 1

)(ˆ1~ φφ . (16)

 Let the lags in the model at the vth iteration be
denoted by Jv. We calculate the parameter estimates

vJφ~ using the equation (16) and section 4.2. Then
we determine the lags Jv+1 = Jv\ j (lags in Jv with j
removed) which minimize the loss function

),(log)1()(~log),(2 jJDjjJ vJv v
βφβδ β −+= (17)

where

∑ ∑
=

=

 −=

N

k

N

l JlNJkkv jjr
N

jJD
vv

1

2

1 ,
1

,)(ˆ)(ˆ)0(ˆ1),(φφ (18)

The factor β in equation (17) is used to balance the
effect of the two terms in the loss function. The
formula used in [1] for),(jJD v is

∑
=

−=
N

k
Jkkv v

rjJD
1

1
,

ˆ)0(ˆ),(R

where)),(),,(ˆˆ(, vkJk JvuvurR
v

∈= and)0),(ˆ(≥uur an

12

estimate of the auto covariance function using
Y=Yk, see section 4.2. This formula seems to be
incorrect or some printing mistake might have
occurred in the original paper. In this formula

)(ˆ)0(ˆ k
Xkr σ= is a single value and

vJk ,R̂ is a matrix,

so),(jvJD becomes a matrix while the loss
function involves it being a single value. Thus,
considering the main idea used in the definition of
the loss function, we suggest the alternative formula
(18). The first term in the loss function indicates
that it is desirable to omit the lag j which its
corresponding coefficient)(~ j

vJφ has the smallest
absolute value among all lags coefficients and has
therefore the least effect in constructing the model.
In the second term through the use of the formula
suggested for),(jvJD we panelize lags associated
with parameter estimates with large variance. If we
ignore the factor)0(k̂r which is equal for all
candidate lag structures,),(jvJD is equal to the

variance of)(ˆ j
vJφ . In order to understand the role

of the term),(jvJD , consider the lags j′ and

j ′′ whose corresponding parameters)(~2 j
vJ ′φ and

)(~2 j
vJ ′′φ are smaller than all the other parameters,

and)(~2 j
vJ ′φ ≤)(~2 j

vJ ′′φ . Now suppose we compute D

for these lags and see that),(jvJD ′ is much larger

than),(jvJD ′′ . This shows that although)(~2 j
vJ ′φ ≤

)(~2 j
vJ ′′φ , the certainty of the estimation for

)(~ j
vJ ′φ is lower than for)(~ j

vJ ′′φ as it has larger

variance. So, it is more plausible to omit j ′′ instead
of j′ . The second term in the loss function through
the use of the tuning factor β gives us the flexibility
to change the decision in such cases.
 The procedure described above is repeated for

1,,2,1 −= mv K where m is the number of lags in
the initial model (a full auto regression). Finally,
the lags of the sub-set auto regression generating
the data),,2,1,(NkYk K= is identified by

110 ,,,),(minargˆ
−== m

J
JJJJJRFPEJ L (19)

where RFPE(J) is a robust analogue of the final
prediction error criterion for multiple data records.
Here

++=

∑ =

N

k k
Z

T

JJJRFPE

1

2 1||1)(~)(γσ (20)

where | J | is the number of lags in J,)(~2 JZσ is the
estimate of the innovation variance given by (15),
and γ is chosen equal to 1.

4.4. Spectral function estimation and the
classification scheme

 In this section we describe the recognition
scheme based on the spectral functions estimated
from CSAR model parameters. We assume that Y is
standardized by an estimate of the scale of X, Xσ̂
which as stated before, is the sample standard
deviation in non-robust procedures or is estimated
by equation (12) for robust algorithms.
 First we estimate the spectral functions
associated with the C object classes using the
training data. The ith class contains Ni independent
records. We obtain the CSAR model parameters for
the kth record in the ith class for all values of k.
Then we calculate the smooth interpolant of the
spectral function associated with the ith class by

πλφλσλ 20),~,g(~)(f
~ 2 ≤≤= JZi (21)

where

2i)(~12

1)~,g(
∑ ∈

−−
=

Jl
l

J

J
el λφπ

φλ (22)

with estimates of 2
Zσ and Jφ given by (15) and (16)

respectively. It is easy to see that)(f
~

i λ is invariant
to shifts, rotation, and scale changes when Y is
standardized.
 Now, we use these spectral functions to
classify objects. A distance based classifier is
suggested for this case in [1] as it appears to give
better performance than feature based techniques.
The distance is defined here as

)f
~

,f̂()f̂,f
~

(i
w

i
ww

i ddd += , (23)

where

∑
∑

−

=
−

=

=

1

0
1

0
)(
)f(h)(

)(

1g)(f,
T

t t

t
tT

t t

w

g
w

w
d

λ
λλ

λ
, (24)

Ttt πλ 2= .

)(f̂ λ is an estimate of the spectral function
associated with Y that is the observation being
classified. This is derived from CSAR model fitted
to Y and spectral function estimated for it
considering N = 1 in (15) and (16) which leads to

22 ˆ~
ZZ σσ = and JJ φφ ˆ~

= .

13

4.5.1. Evaluating the robust parameter
estimation algorithms through spectral functions

 To evaluate the performance of the robust
parameter estimation algorithm, we estimate and
sketch the corresponding spectral functions for
aircraft templates, see Figs. 14 and 15. The spectral
function determined by robust techniques is
denoted by Rf

~
, see Eq. (21), with the corresponding

non-robust estimate by YWf
~

. It is readily apparent
that the aircraft silhouettes give a prominent low
frequency peak in the spectral function. By
comparing the solid and dashed lines in Fig. 14, we
see that the non-robust estimates YWf

~
are greatly

distorted by the presence of outliers, with the
spectral function becoming more like white noise.
When robust procedures are used a different pattern
emerges. Here Rf

~
is relatively unaffected by the

presence of outliers, with similar shapes in outlier-
free and contaminated data. By comparing Figs. 4
and 5 we see that robust and non-robust estimates
are similar in outlier free data.

4.5.2. A classification experiment

 In this section, we first generate and store the
spectral function parameters Zσ~ and)),(~(JjjJ ∈φ
associated with each class using the training time
series. For test data, we estimate and store
parameters Zσ̂ and)),(ˆ(JjjJ ∈φ for all test
records of each class. These training and test data
are the final data used for the classification task,
and are generated independently for k = 0 and k =
12 with s = 0.02.
 In order to benchmark this new approach
(based on spectral functions) against Dubois and
Glanz (DG) approach in [2] (feature based
approach), we generate DG training and test data
too, using the feature vector T

ZM)ˆˆ,,,,(21 σµφφφ K
where we take M = 5 which is the full model order.
 To clarify the effect of robust algorithms, all
the abovementioned training and test data are
generated using both robust and non-robust
procedures. We also examine the effect of
excluding frequencies in the spectral function based
classifier by taking w(λ) = 1 for 10020 lπλ <≤ ,
with l = 20 and l = 50. In [1], l = 100 has been taken
instead of l = 50. Because the portion of spectral
functions located from λ=2π50/100 to λ=2π100/100
is the mirror image of the portion λ = 0 to λ =
2π50/100, we take l = 50 instead of l= 100 to reduce
the computations.
 The percentages of correctly classified
templates using 100 unclassified test templates for
various levels of contamination (k=0 and k=12) are
summarized in tables 7 – 9 for both robust and non-

robust cases. Confusion matrices are also given in
tables 10 – 27.
 It must be noted that, on the contrary with [1],
we do not use the lag selection procedure in the test
set, as it reduces the speed of recognition task
significantly so that it can not be comparable with
DG approach. The same lag structures obtained for
training records are used for test records too.
 For outlier contaminated data (s = 0.02, k= 12)
we see that non-robust procedures (based on sample
covariance function) suffer large reductions in
performance. This is in marked contrast to the
suggested robust approach which is almost
insensitive to outliers. For aircrafts, it is readily
apparent that robust spectral method gives
significantly better performance than DG approach
with robust parameter estimation. For machine
parts, again the spectral approach has better
performance although the difference between two
methods is not very big. For letters, on the contrary
with aircrafts and machine parts, the performance
of DG approach is better. This shows that for a
given problem, we can not certainly say which of
the two methods will give better results and it is
better to test both methods, however , for problems
in which the shapes are rather complex (such as
aircrafts) the use of spectral classifier is preferable.
 For outlier free data (k = 0) the relative
performance of the techniques used in this study
varies slightly according to the templates used, see
tables 7, 8, and 9. In broad terms, non-robust
techniques have a little better performance, with
DG approach giving the best (or equal best)
performance.
 The use of weights with l= 20, has little overall
effect on classification performance in outlier free
data, although significantly improved performance
in outlier contaminated data, see ‘Nut’ in table 8.
 To gain further insight into the relative
performance of the techniques under consideration
we investigate selected confusion matrices. From
tables 10 – 27, in the case of outlier contaminated
data, we see that the confusion matrices associated
with the non-robust spectral approach are greatly
affected by the presence of outliers, although
retaining some structure in common with their
robust analogue. For example ‘Spanner’ in table 19
is most likely alternative to ‘Bar’.
 The confusion matrices of the spectral
approach have similar structures in outlier free data
for robust and non-robust procedures. Also
increasing l to 50 has little effect on the
corresponding confusion matrices.
 In the case of DG algorithm, a similar pattern
emerges, with the presence of outliers having a
large effect on the structure of the confusion
matrices of non-robust procedures. By comparing
tables 14 and 15 we see that the structure of the
confusion matrices associated with the spectral
approach differs substantially from DG approach.

16

0 20 40 60
0

0.5

1

1.5

2

L (BUCCANEER)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

0.5

1

1.5

2

L (F16)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

1

2

3

4

L (GOOSE)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

0.5

1

1.5

2

2.5

L (HARRIER)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

0.5

1

1.5

2

2.5

L (HAWKEYE)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60

0

1

2

3

4

L (HERCULES)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

5

10

15

20

L (MIRAGE)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

1

2

3

4

L (STARSHIP)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

Fig. 14. Estimates of the spectral function YWf

~
for the templates in Fig. 8. The solid line gives the non-robust estimate in outlier free data,

with the dashed line its value in outlier contaminated data (s = 0.02, k = 12). Here L refers to the frequency 2πL/100.

17

0 20 40 60
0

0.5

1

1.5

2

L (BUCCANEER)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

0.5

1

1.5

2

2.5

L (F16)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

1

2

3

4

L (GOOSE)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

0.5

1

1.5

2

2.5

L (HARRIER)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

0.5

1

1.5

2

2.5

3

L (HAWKEYE)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

1

2

3

4

L (HERCULES)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

5

10

15

20

L (MIRAGE)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

0 20 40 60
0

1

2

3

4

L (STARSHIP)

S
P

E
C

TR
A

L
FU

N
C

TI
O

N

Fig. 15. Estimates of the spectral function Rf

~
for the templates in Fig. 8. The solid line gives the robust estimate in outlier free data, with the

dashed line its value in outlier contaminated data (s = 0.02, k = 12). Here L refers to the frequency 2πL/100.

18

The later increasing the likelihood of contamination
by large aberrant observations (outliers). The shape
classification systems were mainly based on the
CAR model parameter representation of two-
dimensional shape boundaries. In order to obtain
the boundary samples from which the CAR model
parameters were estimated, a boundary
approximation scheme was developed to determine
the lengths of N equiangularly spaced radius
vectors projected between the boundary centroid
and the boundary. This scheme accurately
represents convex shapes and complicated concave
shapes. Because of the properties of the boundary
approximation scheme and the CAR model itself,
the parameters of the CAR model are
approximately invariant to shape size, and
translational and rotational position. Two feature
based pattern recognition schemes were
implemented and studied in noise-free environment.
In the contaminated environment, circular sub-set
auto regressions with robust lag selection and
parameter estimation were used to estimate the
spectral function associated with object boundaries
and classify unknown templates using a ‘distance’
based classifier. The suggested robust approach
substantially outperforms non-robust techniques
(based on the sample covariance function) which
suffer catastrophic reductions in performance in
outlier contaminated data. It was shown that the
robust lag selection procedure is quite advantageous
for a wide range of templates in contaminated
environment.
 In our experiment we did not use the lag
selection procedure in the test set because of the
significant speed reduction. However it can be
shown, see [1], that performing lag selection in the
test set, adapts the model structure to the data and is
well suited to classification problems where
sensitivity to clutter is important.
 According to our results we can generally say
that the CAR model parameters are useful shape
descriptors for recognition purposes. We obtained
successful classification results for a wide range of
convex and concave shapes in various sizes and
spatial positions by the direct use of these
parameters or using them for estimating spectral
functions. In noise free environment we saw that
the model order of each individual shape sample
does not have to be determined for accurate
recognition and shapes can be successfully
classified by the use of CAR models of order lower
than optimum. However the lag selection procedure
introduced in section 4.3 can be used in problems
that are sensitive to the model order.
 We did also some testing of the performance
of our algorithms on deformed shapes. Although
our results were not very satisfactory, the CAR
model parameters can be potentially used for these
problems too and further studies may lead to much
better results. It is noted that there is a tradeoff

between sensitivity to the main shapes and
insensitivity to deformation and this tradeoff is
implicit in any effort to recognize deformed shapes.

References

[1] R.H. Glendinning, “Robust shape classification,” Signal
Processing, vol. 77, pp. 121 – 138, 1999.

[2] S. R. Dubois and F. H. Glanz, “An Autoregressive Model
Approach to Two-Dimensional Shape Classification,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8,
pp. 55 – 66, 1986.

[3] R. L. Kashyap and R. Chellappa, “Stochastic models for
closed boundary analysis: Representation and reconstruc-
tion,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 627 –
637, 1981.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern
Classification,” 2nd Ed., Wiley, 2000.

25

2. Boundary Sampling

TimeSeries.m

function [r_t]=TimeSeries(Boundary,AngleNo)
%function [r_t, Intersections]=TimeSeries(Boundary,AngleNo)
Centroid=round(mean(Boundary));
N=[0:fix(AngleNo/4)-1];
Slopes=tan(2*pi*N/AngleNo);
MaxSlopeNo=size(Slopes,2)+1;
Slopes(MaxSlopeNo)=10000; % a large value for tan(pi/2)
OldSlopeNo=MaxSlopeNo+1;
r_t=[];
counter=0;
%Intersections=[Centroid(1) Centroid(2)];
i=1;
InitializationFlag=0;

 =SlopeNo0+1;
 RSD0=s-Slopes(SlopeNo0);
 RSD1=s-Slopes(SlopeNo1);
 if OldSlopeNo~=SlopeNo1
 r_t(end+1)=norm(Boundary(i,:)-Centroid);
 OldSlopeNo=SlopeNo1;
% Intersections(end+1,:)=Boundary(i,:);
 end
 else if (SD1*RSD1)<0
 m=find(Slopes <= s);
 SlopeNo0=m(end);
 SlopeNo1=SlopeNo0+1;
 RSD0=s-Slopes(SlopeNo0);
 RSD1=s-Slopes(SlopeNo1);
 if OldSlopeNo~=SlopeNo0
 r_t(end+1)=norm(Boundary(i,:)-Centroid);
 OldSlopeNo=SlopeNo0;
% Intersections(end+1,:)=Boundary(i,:);
 end
 end
 end
 end
 end
 end
 i=i+1;
end

27

3. Boundary Modeling

3.1. Circular Full Auto Regressive Model of order m

• The formulas presented in section 2.3 are used in this program.
• This program was used in noise-free environment (section 3).
• Instead of this program we can use the next program (CSARModel.m) choosing J = (1, 2, …, m).

CFARModel.m

function [Theta, Alpha, Beta]=CFARModel(r_t, M) % M = Model Order
N=size(r_t,2);
for i=1:M
 Zt_1(i,:)=circshift(r_t,[0 i]);

(1:M);

Alpha=ThetaAlpha(end);
Beta=sum((r_t - ThetaAlpha' *Ut_1).^2) /N;

3.2. Circular Sub-set Auto Regressive Model

• The Yule-Walker equation is used in this program with non-robust estimations (based on sample

covariance function).
• This program was used in section 4 wherever non-robust procedures were desired.

CSARModel.m

function [Phi_hat,Sigma2_hat]=CSARModel(Y, J)
T=size(Y,2);
M=size(J,1);
r_hat0=Autocovariance(Y,0);
R_hat=r_hat0*eye(M);
for i=1:M
 r_hat(i,1)=Autocovariance(Y,J(i));
 for j=i+1:M
 R_hat(i,j)=Autocovariance(Y, abs(J(i)-J(j)));
 end
end
R_hat=R_hat+(triu(R_hat,1))';

Myu=mean(Y);
N=size(Y,2);
Ac=(Y - Myu)*(circshift(Y,[0 Lag]) - Myu)'/N ;

3.3. Robust Circular Sub-set Auto Regressive Model

• The Yule-Walker equation is used in this program with robust estimations given by Eqs. (9), (10), (11),
and (12).

• This program was used in section 4 wherever robust procedures were desired.

28

RobustCSARModel.m

function [Phi_hat,Sigma2_hat]=RobustCSARModel(Y, J, f)
T=size(Y,2);
M=size(J,1);
Myu_hat=median(Y);
SigmaX_hat=1.483*median(abs(Y-Myu_hat));
r_hat0=RobustAc(Y, Myu_hat, SigmaX_hat, 0, f);
R_hat=r_hat0*eye(M);
for i=1:M

end
R_hat=R_hat+(triu(R_hat,1))';
Phi_hat = inv(R_hat)*r_hat ;
Sigma2_hat=(T-M)/(T-2*M-1)*(r_hat0-sum(Phi_hat.*r_hat));

));
c_hat=Psi*(circshift(Psi,[0 Lag]))'/T;
c_hat0=Psi*Psi'/T ;
RAc= SigmaX_hat^2 * c_hat/c_hat0;

4. Lag Selection

LagSelection.m

load Letters\Arial\Data\Noisy\TrainSeries
load Letters\Arial\Data\HubersParameter

M_Init=20; % Initial Model Order
Beta=0.2; % Balance factor in Loss Function
J=[];

 ;
 J(1:size(RLags,1),end+1)=RLags; % since lag structuers have different sizes, gaps are filled by 0
 M(i)=size(RLags,1); % Store the size of each lag structure
 i
end
% save('Letters\Arial\Data\Noisy\RobustLags','J','M');

RobustLags.m

function RLags=RobustLags(Y,T,f,M,Beta)
Gama=1;
Jv=([1:M])';
CandidateLags=Jv;
N=size(Y,1);
for v=1:M-1
 for k=1:N
 if v==1
 Yk=Y(k,1:T(k));
 SigmaX_hat(k)=1.483*median(abs(Yk-median(Yk)));
 end
 Yk=Y(k,1:T(k));
 [Phi(:,k) SigmaZ2(k)]=RobustCSARModel(Yk/SigmaX_hat(k),Jv,f);

 SigmaZ2_tilda(v)=SigmaZ2;

29

 LossFunction=Beta*log10(Phi.^2);
 end
 [u j]=min(LossFunction);
 Jv(j(1))=[];
 CandidateLags(1:M-v,end+1)=Jv;
 clear Phi;
 v
end
RFPE=SigmaZ2_tilda.*(1 + Gama*([M:-1:2]+1)/sum(T));
[u j]=min(RFPE);
m=find(CandidateLags(:,j)>0);
RLags=CandidateLags(1:m(end),j);

5. Training and Test data generation

5.1. Generating Training and Test series

• This program generates clean Training and Test time series.

TSGenerator.m

Image(:,:,1)=~imread('Letters\BookAntiqua\G','bmp');
Image(:,:,2)=~imread('Letters\BookAntiqua\H','bmp');
Image(:,:,3)=~imread('Letters\BookAntiqua\I','bmp');
Image(:,:,4)=~imread('Letters\BookAntiqua\J','bmp');
Ntrain=100; % Number of training data
AngleNo=76; % Number of angles for sampeling(it must be a multiple of 4)
ScaleFactor=round(unifrnd(70,130,[1 Ntrain]))/100; %Images are scaled from 70% up to 130%
RotationAngles=randperm(360); %Images are rotated from 0d up to 360d. For Ntrain > 360 another...
RotationAngles=RotationAngles(1:Ntrain);% ... random generator function must be used

C=size(Image,3); % Number of classes
Xt=[];
for i=1:Ntrain
 ScaledIm=imresize(Image,ScaleFactor(i));
 RotatedScaledIm=imrotate(ScaledIm,RotationAngles(i),'bicubic');

 T(i,j)=size(r_t,2);
 j
 end
 i
end
% save('Letters\BookAntiqua\Data\Clean\TestSeries','Xt','T')
% save('Letters\BookAntiqua\Data\Clean\SigmaX','SigmaX') % SigmaX may not be needed

• This program adds contamination to the clean time series.

DataContaminator.m

load Letters\Arial\Data\Clean\TrainSeries
%load Letters\Arial\Data\Clean\TestSeries

SigmaN=4;
k=12;
s=0.02;
% Notice! comment the specified lines when use this program for generating test data
NoisyData=zeros(size(Xt));
ContaminatedData=zeros(size(Xt));
for i=1:size(Xt,1)
 for j=1:size(Xt,3)
 X=Xt(i,1:T(i,j),j);

 Myu_hat=median(Y); % Comment
 SigmaX_hat=1.483*median(abs(Y-Myu_hat)); % Comment
 F(i,j)=max(abs((X-Myu_hat)/SigmaX_hat)); % Comment

 A=[zeros(1,T(i,j)-fix(s*T(i,j))) sign(unifrnd(-1,1,[1 fix(s*T(i,j))]))];
 A=A(randperm(T(i,j)));
 SigmaX=sqrt(var(X));
 Y=X + N + k*SigmaX*A;
 m=find(Y<0);
 Y(m)=0;
 ContaminatedData(i,1:T(i,j),j)=Y;
 end
end
% Yt=NoisyData;
% save('Letters\Arial\Data\Noisy\TrainSeries','Yt','T');
% Yt=ContaminatedData;
% save('Letters\Arial\Data\Contaminated\TrainSeries','Yt','T');
% F=max(F); % Comment
% save('Letters\Arial\Data\HubersParameter','F'); % Comment

% Y1=Xt(i,1:T(i,j),j);
% Y2=NoisyData(i,1:T(i,j),j);
% Y3=ContaminatedData(i,1:T(i,j),j);
% stairs(Y1)
% figure,stairs(Y2)
% figure,stairs(Y3)

5.2. Generating data for Dubois and Glanz approach

• This program generates Training or Test data for noise-free environment using CFARModel.m.
• This program was used in section 3.

TrainDataGenerator.m

Image(:,:,1)=~imread('Letters\BookAntiqua\G','bmp');
Image(:,:,2)=~imread('Letters\BookAntiqua\H','bmp');
Image(:,:,3)=~imread('Letters\BookAntiqua\I','bmp');
Image(:,:,4)=~imread('Letters\BookAntiqua\J','bmp');
Ntrain=25; % Number of training data
M=2; % Model Order

RotationAngles=randperm(360); %Images are rotated from 0d up to 360d. For Ntrain > 360 another...
RotationAngles=RotationAngles(1:Ntrain);% ... random generator function must be used

C=size(Image,3); % Number of classes
for i=1:Ntrain

 Xtrain02(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 3);
 Xtrain03(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 4);
 Xtrain04(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 5);
 Xtrain05(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 6);
 Xtrain06(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 7);
 Xtrain07(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 8);
 Xtrain08(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 9);
 Xtrain09(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 [Theta, Alpha, Beta]=CARModel(r_t , 10);

31

 Xtrain10(:,i,j)=[Theta; Alpha/sqrt(Beta)];
 j
 end
 i
end

• This program generates Training and Test data for contaminated environment using CSARModel.m and
RobustCSARModel.m

• The robust part must be commented when non-robust data is desired.

DGDataGenerator.m

load Letters\Arial\Data\Contaminated\TrainSeries
% load Letters\Arial\Data\Contaminated\TestSeries
load Letters\Arial\Data\HubersParameter
M=5; % Full Model Order

% Notice! The robust part must be commented when non-robust data is desired
J=([1:M])';
for i=1:size(Yt,1)
 for j=1:size(Yt,3)
 Y=Yt(i,1:T(i,j),j);

 % Non-Robust -----------------------------------
% [Phi_hat SigmaZ2_hat]=CSARModel(Y,J);

 Myu_hat=median(Y);

 X(:,i,j)=[Phi_hat ; Myu_hat/sqrt(SigmaZ2_hat)];
 end
end
% Xtrain=X;
% save('Letters\Arial\Data\Contaminated\RobustDGXtrain','Xtrain')

% Xtest=X;
% save('Letters\Arial\Data\Contaminated\RobustDGXtest','Xtest')

5.3. Generating data for Spectral function approach

• This program generates Training data for spectral approach using CSARModel.m and
RobustCSARModel.m

• The robust part must be commented when non-robust data is desired.

SFArgumentsEstimator.m

load Aircrafts\Data\Contaminated\TrainSeries
load Aircrafts\Data\Contaminated\RobustLags
load Aircrafts\Data\HubersParameter

Phi_tilda=[];
SigmaZ2_tilda=[];
% Notice! The robust part must be commented when non-robust data is desired
for j=1:size(Yt,3);

 [Phi(:,i) SigmaZ2(i)]=CSARModel(Y/SigmaX_hat,Jj);
 % Robust ---
% SigmaX_hat=1.483*median(abs(Y-median(Y)));
% [Phi(:,i) SigmaZ2(i)]=RobustCSARModel(Y/SigmaX_hat,Jj,F(j));

 end
 Phi_tilda(1:size(Phi,1),j)=mean(Phi,2);

32

 SigmaZ2_tilda(j)=mean(SigmaZ2);
 clear Phi
 j
end
% save('Aircrafts\Data\Contaminated\NonRobustTrainSFArgs','Phi_tilda','SigmaZ2_tilda');

• This program generates Test data for spectral approach using CSARModel.m and RobustCSARModel.m
• The robust part must be commented when non-robust data is desired.

SFArgumentsEstimator Test.m

load Aircrafts\Data\Contaminated\TestSeries
load Aircrafts\Data\Contaminated\RobustLags
load Aircrafts\Data\HubersParameter

Phi_hat=[];
SigmaZ2_hat=[];
% Notice! The robust part must be commented when non-robust data is desired
for j=1:size(Yt,3);

 Non-robust ---
 SigmaX_hat=sqrt(var(Y));
 [Phi_hat(1:M(j),i,j) SigmaZ2_hat(i,j)]=CSARModel(Y/SigmaX_hat,Jj);
 % Robust ---
% SigmaX_hat=1.483*median(abs(Y-median(Y)));
% [Phi_hat(1:M(j),i,j) SigmaZ2_hat(i,j)]=RobustCSARModel(Y/SigmaX_hat,Jj,F(j));

 end
 j
end
% save('Aircrafts\Data\Contaminated\NonRobustTestSFArgs','Phi_hat','SigmaZ2_hat','T');

6. Classifiers

6.1. Bayes optimal classifier with Gaussian parametric estimation of PDFs

BayesClassifier.m

% Minimm error Bayes classifier---
load Letters\Arial\Data\Contaminated\RobustDGXtrain
load Letters\Arial\Data\Contaminated\RobustDGXtest
%Xtrain(:,21:end,:)=[]; % Reducing the size of training set

[L Ntrain C]=size(Xtrain);
Ntest=size(Xtest,2);
Pw(1:C)=1/C; % a priori class distr bution

[Myu,Sigma]=MLPdfEstimator(Xtrain);

for k=1:Ntest
 for i=1:C
 for j=1:C
 difference=Xtest(:,k,i)-Myu(:,1,j);
 f_xk_w(j)=exp(-0.5*difference' * SigmaInv(:,:,j) * difference) / const(j);
 end
 [m,J]=max(Pw.*f_xk_w);
 Confusion(i,J)=Confusion(i,J)+1;
 end
end

33

Confusion=100*Confusion/Ntest;
AverageCorrect=sum(diag(Confusion))/C

% Computing Classification Error (optional!)
% Error=zeros(C,C);
% for k=1:Ntrain
% for i=1:C
% for j=1:C
% difference=Xtrain(:,k,i)-Myu(:,1,j);
% f_xk_w(j)=exp(-0.5*difference' * SigmaInv(:,:,j) * difference) / const(j);
% end
% [m,J]=max(Pw.*f_xk_w);
% Error(i,J)=Error(i,J)+1;
% end
% end
% Error=(Error-diag(diag(Error)))/Ntrain;
% AveragePrError=sum(sum(Error))/C

MLPdfEstimator.m

 for k=1:Ntrain
 Sigma(:,:,i)=Sigma(:,:,i) + (Xtrain(:,k,i)-Myu(:,1,i)) * (Xtrain (:,k,i)-Myu(:,1,i))' ;
 end
end
Sigma=Sigma/(Ntrain-1);

6.2. Linear classifier based on L(L-1)/2 hyper planes

L L 1LinearClassifier.m

%Linear classifier based on L(L-1)/2 hyperplanes--
load Aircrafts\Data\Clean\Dubois_Glanz\Xtrain05
load Aircrafts\Data\Clean\Dubois_Glanz\Xtest05
%Xtrain(:,11:end,:)=[];

[L Ntrain C]=size(Xtrain);
Ntest=size(Xtest,2);
Pw(1:C)=1/C; % A priori class distribution
Tolerance=0.01; % Accuracy of W

k=1;

zeros(C,(C+1));

Xtst=[ones(1,Ntest,C);Xtest];
for i=1:C
 g_x = W' * Xtst(:,:,i);
 [PosI PosK]=find(g_x >= 0);
 [NegI NegK]=find(g_x < 0);
 rowP=MapI(PosI);
 columnN=MapJ(NegI);
 VotesMat=zeros(C,Ntest);
 for k=1:size(PosI)
 VotesMat(rowP(k),PosK(k))=VotesMat(rowP(k),PosK(k))+1;
 end
 for k=1:size(NegI)
 VotesMat(columnN(k),NegK(k))=VotesMat(columnN(k),NegK(k))+1;
 end
 [MajorityVote,ClassNo]=max(VotesMat);
 ClassNo(find(MajorityVote==1))=C+1;
 for j=1:Ntest

34

 Confusion(i,ClassNo(j))=Confusion(i,ClassNo(j))+1;
 end
end
Confusion=100*Confusion/Ntest;
AverageUnKnown=sum(Confusion(:,C+1))/C
temp=Confusion;
temp(:,C+1)=[];
AverageCorrect=sum(diag(temp))/C

LinearSeparator.m

function [W]=LinearSeparator(Class1,Class2,Tolerance)
[L N1]=size(Class1);
N2=size(Class2,2);
Z=([ones(1,N1) -ones(1,N2);Class1 -Class2])';
Myu1=sum(Class1,2)/N1;
Myu2=sum(Class1,2)/N2;
%Initial Values -------------
Bt=rand(N1+N2,1);
w0=0.5;
Wt=[w0;(Myu1-Myu2)];
Ro=0.01;
%----------------------------
error=100;

 =Wtt;
 Bt=Btt;
end
W=Wt;

6.3. Spectral classifier

• In this program lag selection is not employed in the test set.

SpectralClassifier.m

load Aircrafts\Data\Contaminated\NonRobustTrainSFArgs
load Aircrafts\Data\Contaminated\NonRobustTestSFArgs
load Aircrafts\Data\Contaminated\RobustLags
L=20; % Limmiting frequency to Landa=2*pi*L/100
load Letters\Arial\Data\Clean\RobustTrainSFArgs
load Letters\BookAntiqua\Data\Clean\RobustTestSFArgs
load Letters\Arial\Data\Noisy\RobustLags

C=size(Phi_hat,3); % Number of classes
N=size(Phi_hat,2); % Number of test data in each class

 r=1:C
 f_tilda=SigmaZ2_tilda(r) * g(Phi_tilda(1:M(r),r), Landa, J(1:M(r),r));
 dw_tilda_hat=sum(h(f_tilda./f_hat)) / size(Landa,2);
 dw_hat_tilda=sum(h(f_hat./f_tilda)) / size(Landa,2);;
 Dw_bar(r)= dw_tilda_hat + dw_hat_tilda;
 end
 [u I]=min(Dw_bar);
 Confusion(k,I)=Confusion(k,I)+1;
 end
 k
end
AverageCorrect=mean(diag(Confusion))

35

• In this program lag selection is employed in the test set.

SpectralClassifierWithLS.m

load Aircrafts\Data\Contaminated\RobustTrainSFArgs
load Aircrafts\Data\Contaminated\RobustLags
load Aircrafts\Data\HubersParameter
load Aircrafts\Data\Contaminated\TestSeries
L=20; % Limmiting frequency to Landa=2*pi*L/100
M_Init=30; % Initial Model Order(for lag selection in test data)
Beta=0.2; % Balance factor in Loss Function(//)

C=size(Yt,3); % Number of classes
N=size(Yt,1); % Number of test data in each class
Confusion=zeros(C,C);
g=inline('1./(2*pi*(abs(1-sum((Phi_tilda*ones(1,size(Landa,2))).*exp(-i*J*Landa)))).^2)','Phi_tilda','Landa','J');
h=inline('(x-1).^2','x');

 % Non-Robust --
% SigmaX_hat=sqrt(var(Y));

 SigmaZ2_hat * g(Phi_hat, Landa, Lags);
 for r=1:C
 f_tilda=SigmaZ2_tilda(r) * g(Phi_tilda(1:M(r),r), Landa, J(1:M(r),r));
 dw_tilda_hat=sum(h(f_tilda./f_hat)) / size(Landa,2);
 dw_hat_tilda=sum(h(f_hat./f_tilda)) / size(Landa,2);;
 Dw_bar(r)= dw_tilda_hat + dw_hat_tilda;
 end
 [u I]=min(Dw_bar);
 Confusion(k,I)=Confusion(k,I)+1;
 end
 k
end
AverageCorrect=mean(diag(Confusion))

7. Evaluating the robust parameter estimation algorithms through spectral functions

• This program is used in section 4.5.1 to estimate the spectral functions shown in Figs. 14 and 15.
• It must be noted that here we use the lag structure obtained for noisy data (k=0) for contaminated data

(k=12) too, as we want to examine only the performance of robust parameter estimation procedure
(section 4.2)

SFTest.m

load Aircrafts\Data\Noisy\RobustTrainSFArgs
Phi_tilda1=Phi_tilda;
SigmaZ2_tilda1=SigmaZ2_tilda;
load Aircrafts\Data\Contaminated\TrainSeries
load Aircrafts\Data\Noisy\RobustLags
load Aircrafts\Data\HubersParameter

Phi_tilda2=[];
SigmaZ2_tilda2=[];
for j=1:size(Yt,3);
 Jj=J(1:M(j),j);
 for i=1:size(Yt,1)
 Y=Yt(i,1:T(i,j),j);

 % Non-Robust --

36

% SigmaX_hat=sqrt(var(Y));
% [Phi(:,i) SigmaZ2(i)]=CSARModel(Y/SigmaX_hat,Jj);

 SigmaZ2_tilda2(j)=mean(SigmaZ2);
 clear Phi
 j
end
% Once the parameters have been estimated all the lines above can be commented
% Spectral function estimation and show ------------------------------
g=inline('1/(2*pi*(abs(1-sum(Phi_tilda.*exp(-i*Landa*J))))^2)','Phi_tilda','Landa','J');
k=8; % Number of class being tested: 1:Buccaneer 2:F16 ... 8:Starship
Jk=J(1:M(k),k);

Phik1=Phi_tilda1(1:M(k),k);
Sigk1=SigmaZ2_tilda1(k);
Phik2=Phi_tilda2(1:M(k),k);
Sigk2=SigmaZ2_tilda2(k);

Landa=[0:2*pi/100:2*pi*50/100];
L=[1:51];
for i=1:size(Landa,2)
 f1(i)=Sigk1*g(Phik1,Landa(i),Jk);
 f2(i)=Sigk2*g(Phik2,Landa(i),Jk);
end
plot(L,f1,'-',L,f2,':r');
xlabel('L (STARSHIP)');
ylabel('SPECTRAL FUNCTION');

37

 Letters
 Arial

• G.bmp
• H.bmp
• I.bmp
• J.bmp
• Data

♦ HubersParameter
♦ Clean

 RobustTrainSFArgs
 TestSeries
 TrainSeries
 SigmaX
 Dubois_Glanz

 Xtest02
 Xtest03
 Xtest04
 Xtest05
 Xtest06
 Xtest07
 Xtest08
 Xtest09
 Xtest10
 Xtrain02
 Xtrain03
 Xtrain04
 Xtrain05
 Xtrain06
 Xtrain07
 Xtrain08
 Xtrain09
 Xtrain10

♦ Noisy
 NonRobustDGXtest
 NonRobustDGXtrain
 NonRobustTestSFArgs
 NonRobustTrainSFArgs
 RobustDGXtest
 RobustDGXtrain
 RobustLags
 RobustTestSFArgs
 RobustTrainSFArgs
 TestSeries
 TrainSeries

♦ Contaminated
 NonRobustDGXtest
 NonRobustDGXtrain
 NonRobustTestSFArgs
 NonRobustTrainSFArgs
 RobustDGXtest
 RobustDGXtrain
 RobustLags
 RobustTestSFArgs
 RobustTrainSFArgs
 TestSeries
 TrainSeries

 BookAntiqua
• G.bmp
• H.bmp
• I.bmp
• J.bmp
• Data

♦ Clean
 RobustTestSFArgs
 SigmaX
 TestSeries
 Xtest02
 Xtest03
 Xtest04
 Xtest05
 Xtest06
 Xtest07
 Xtest08
 Xtest09
 Xtest10

 Tahoma
• G.bmp
• H.bmp
• I.bmp
• J.bmp

39

• Data
♦ Clean

 RobustTestSFArgs
 SigmaX
 TestSeries
 Xtest02
 Xtest03
 Xtest04
 Xtest05
 Xtest06
 Xtest07
 Xtest08
 Xtest09
 Xtest10

 TimesNewRoman
• G.bmp
• H.bmp
• I.bmp
• J.bmp
• Data

♦ Clean
 RobustTestSFArgs
 SigmaX
 TestSeries
 Xtest02
 Xtest03
 Xtest04
 Xtest05
 Xtest06
 Xtest07
 Xtest08
 Xtest09
 Xtest10

 MachineParts
 Bar.bmp
 Bolt.bmp
 Boomerang.bmp
 Cylinder.bmp
 Nut.bmp
 Spanner.bmp
 Star.bmp
 Data

• HubersParameter
• Clean

♦ TestSeries
♦ TrainSeries
♦ SigmaX
♦ Dubois_Glanz

 Xtest02
 Xtest03
 Xtest04
 Xtest05
 Xtest06
 Xtest07
 Xtest08
 Xtest09
 Xtest10
 Xtrain02
 Xtrain03
 Xtrain04
 Xtrain05
 Xtrain06
 Xtrain07
 Xtrain08
 Xtrain09
 Xtrain10

• Noisy
♦ NonRobustDGXtest
♦ NonRobustDGXtrain
♦ NonRobustTestSFArgs
♦ NonRobustTrainSFArgs
♦ RobustDGXtest
♦ RobustDGXtrain
♦ RobustLags
♦ RobustTestSFArgs

40

♦ RobustTrainSFArgs
♦ TestSeries
♦ TrainSeries

• Contaminated
♦ NonRobustDGXtest
♦ NonRobustDGXtrain
♦ NonRobustTestSFArgs
♦ NonRobustTrainSFArgs
♦ RobustDGXtest
♦ RobustDGXtrain
♦ RobustLags
♦ RobustTestSFArgs
♦ RobustTestSFArgs05
♦ RobustTrainSFArgs
♦ RobustTrainSFArgs05
♦ TestSeries
♦ TrainSeries

 BayesClassifier.m
 BoundaryExtraction.m
 CFARModel.m
 CSARModel.m
 DataContaminator.m
 DGDataGenerator.m
 Imclean.m
 L_L_1LinearClassifier.m
 LagSelection.m
 LinearSeperator.m
 MLPdfEstimator.m
 RobustCSARModel.m
 RobustLags.m
 SFArgumentsEstimator.m
 SFArgumentsEstimator_Test.m
 SFTest.m
 SpectralClassifier.m
 SpectralClassifierWithLS.m
 TimeSeries.m
 TrainDataGeberator.m
 TSGenerator.m

 References
 [1].pdf
 [3].pdf

 Report.pdf

41

