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Abstract 
 
In this project we consider the problem of 

classifying objects using their two-dimensional 
silhouettes in noise-free environments as well as 
environments generating large aberrant observations 
(outliers).  We concentrate on fast classification 
algorithms for near real-time applications. In order to 
obtain acceptable results in both environments, two 
independent classifying methods are presented and 
examined through three sets of shape. Both these 
methods are generally based on the use of circular 
autoregressive (CAR) model parameters which 
represent the shape of the boundaries detected in 
digitized binary images of the objects. Robust 
parameter estimation and lag selection procedures are 
introduced and used in contaminated environment. All 
object identification techniques are insensitive to object 
size and orientation.  

All techniques and algorithms are implemented 
with MATLAB and contaminations are generated 
artificially. 

 
1. Introduction 
 
 Recognizing two or three dimensional objects is        
a central problem in machine vision, with 
applications to aircraft identification, medical 
diagnosis from cell characteristics, hand written 
character recognition, automatic inspection of 
industrial processes, and so on. We focus on 
techniques based on two dimensional boundary 
information of shapes whose boundary does not cross 
itself. Shape information is obtained by the use of a 
circular autoregressive (CAR) model representing the 
objects boundary. 
 Section 2 describes the boundary modeling used 
in our all algorithms. In section 3 the classification 
problem in noise-free environment is considered. The 
feature extraction procedure based on model 
parameter estimates is carried out in section 3.1. Two 
fast classifiers are introduced in section 3.2 and their 
performance is tested in section 3.3. Section 3.4 
examines the ability of our approach in recognizing 
deformed shapes. 
 Classification in contaminated environment is 
the subject of section 4. The model is introduced in 
section 4.1. Robust parameter estimation and lag 
selection algorithms are presented in sections 4.2 and 
4.3. A new classification approach based on spectral 
functions estimated from model parameters is 
explained in section 4.4. In section 4.5 we indicate 
the insensitivity of robust methods to outliers through 
some spectral function diagrams. The classification 
algorithms are also tested in this section. Finally, we 
summarize the conclusions in section 5. 
 
2. The Boundary Model 
 
 Our shape description technique is based on the 
use of a full circular autoregressive (CAR) model of 
order M in noise-free environment and a circular sub-

set autoregressive (CSAR) model in contaminated 
environment. An autoregressive model is a 
parametric equation that expresses each sample of an 
ordered set of data samples as a linear combination of 
a specified number of previous samples from the set 
plus an error term. 
 The autoregressive model can be used to express 
a polygonal approximation of a two-dimensional 
object boundary. With appropriate boundary 
sampling, functions of the model parameters are 
invariant to rotation, translation, and scaling of the 
boundary and can be used as shape descriptors. 

In order to obtain CAR model parameters of a 
given shape, we must first extract its boundary. Then 
the boundary is approximated by a sequence of 
ordered samples and represented by a set of CAR 
model parameters. These procedures are what we are 
going to explain in sections 2.1-2.3. 

 
2.1. Boundary Extraction     
 
 Suppose we have an isolated black and white 
image of an object (e.g. black object in a white 
background). Driving this image from the original 
image taken by camera might need some 
preprocessing that is not the subject of this project. In 
order to extract the boundary of this image we 
suggest this simple algorithm 

1) Find the topmost pixel of the object and 
store it as a boundary point. Also choose 
this point as starting point. 

2) Define eight different directions to access all 
neighbor pixels of current point and order 
them in clockwise direction starting at left 
direction (see Fig. 1). Choose direction (1) 
as current direction. 

3) Check the current point neighbor pixel in 
current direction.  
If it does not belong to the object, check the 
pixel in next direction. Repeat this until you 
reach to a pixel which belongs to the object. 
Store this pixel as a boundary point and 
choose its access direction as current 
direction. Also choose this point as current 
point.                                                          
Else if it belongs to the object, check the 
pixel in previous direction. Repeat this until 
you reach to a pixel not in the object. Store 
the last detected object pixel as a boundary 
pixel and choose its access direction as 
current direction. Also choose this point as 
current point. 

4) If the current point is not the starting point, 
go back to step 3), other wise delete this last 
stored point and terminate the program. 

 
This algorithm is shown graphically for a few steps 
in Fig. 1. As we can see in this figure, pixels around 
the current pixel are checked one by one until an Off-
to-On or On-to-Off transition occurs in the state of 
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d. Because a change in sectors can happen 
between the last boundary point and the first 
one (interpreting circularly), we add the first 
(starting) boundary point to the end of the 
sequence of boundary points if this point is 
not on a horizontal or vertical radius vector. 
In this way we are able to detect the above-
mentioned intersection too. 

 
We obtain our desired boundary representing 

time series by implementing the algorithm described 
in this section and are able to construct the shape 
autoregressive model. This is the subject which is 
discussed in next section. 
 
2.3. Mathematical modeling of the boundary 
[3]  
 

In this section we consider the analyses of the 
one-dimensional time series {r(1), r(2), . . . , r(T)} 
derived from the methods discussed in previous 
sections. Since the boundary is closed, 
 

eger k r(k) , T)r(k int∀=+       (1) 
 
we fit a particular type of CAR model to this data 
(see [3]): 
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where 
       tr  = current radius vector length      
        ][ jttr − = the radius vector length detected tj 

   radius vectors before the current tr
   (collectively called lag terms). Here 
   [x] is x interpreted periodically on the
   integers 1, 2, …, N   
   mθθ ,,1 L =  unknown lag coefficients to be 

estimated from the observed time 
series   

                 m = model order 
   β = unknown constant to be estimated 

      twβ = current error, noise, residual 

      α =  unknown constant to be estimated 
        { }tw  = a random sequence of independent 

zero-mean samples with unit variance: 
E(wi) = 0, E(wiwj) = δij 

 
Since the variance of tw  is one, the β  factor 

transforms the unit variance random variable tw  to a 
random variable with variance β . 

The unknown model parameters ),,( βα θ   in 
Eq. (2) are estimated from the observed time series. 
The popular estimation of the parameters is the ML 

estimation. If we let ),,( ∗∗∗ βα θ  be the ML 

estimation of the parameters ),,( βα θ  , then ∗θ  can 
be computed by a gradient algorithm. For reducing 
the computations in the estimation procedure, the use 
of the following LS estimation is suggested by [3]. 
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Also θ̂  can be obtained from the well-known 
Yule-Walker equation which is described in section 
4, and then α̂ can be written as  
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This Equation shows that α is proportional to the 
mean radius vector length, r and is therefore a 
descriptor of the shape size. For large T, this LS 
estimates tend to ML estimates asymptotically.      
 The boundary representation and modeling 
schemes that we have explained so far, are 
insensitive to object translations, and to rotation of 
the object and variations in the starting sample over 
angles that are integral multiples of 2π/T. It can also 
be shown that the CAR model Parameters, θ , are not 
dependent on the size of the object (refer to [3] for 
the proof), where as the parameters α and β are 
directly proportional to size. However the function 

βα , which can be interpreted as a signal-to-noise 
ratio, is size independent. These invariant properties 
of the parameters ),( βαθ make them attractive 
candidates as shape features for recognition purposes. 
This idea is realized in section 3.1. 
 
3.Classification in noise-free environment 
 

Having constructed the mathematical shape 
models, we are now able to develop a shape classifier 
based on the features that are extracted from the 
shape boundaries. The feature extraction procedure is 
described in section 3.1. Two fast classification 
algorithms which are suitable for near real-time 
applications are introduced and examined using a 
number of realistic machine parts and aircraft 
silhouettes, and a set of four letters of alphabet. All 
these three pattern sets are shown in Figs. 8, 9, and 
10. At last the ability of the algorithms in recognizing 
deformed shapes is assessed in section 3.4. 
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This is the same model we used in section 2.3 
where µ is equivalent to α and 2

Zσ  is equivalent to β. 
In noise-free environment we considered a full 
model of order m, ),m),,((J TK21= . Here, in the 
case of sub-set model, we employ a robust lag 
selection procedure to find a near optimum lag 
structure J for each template. This is presented in 
section 4.3. Particular robust parameter estimations 
are also introduced in section 4.2 to mitigate the 
effect of outliers. 
 
4.2. Robust parameter estimation 
 

Consider a circular sub-set auto regression 
with lags J and parameters T

J(j)J J),j( ∈= φφ . We 
estimate the latter from a single data record 

,T),,t(YY t K1== using the Yule-Walker equations. 

These are JJJ r̂ˆˆ =φR , where ),|),(|ˆ(ˆ JjijirJ ∈−=R  
and ));(ˆ(ˆ JiirrJ ∈= . When non-robust procedures 
are required, )0),(ˆ( ≥uur  is the sample covariance 
function 
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In this case the estimated parameters Jφ̂ are exactly 
equal to what is obtained by the formulas presented 
in section 2.3. Here, to mitigate the effect of 
outliers, we use the robust estimate of the auto 
covariance function given by  
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For non-robust procedures, µ̂ is estimated by the 
sample mean value Y , and the sample standard 
deviation is used for Xσ̂ . The robust alternatives 
for these parameters are 
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( )TtYtX ,,1,ˆmedian483.1ˆ L=−= µσ .        (12) 
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where  f  is a parameter chosen appropriately for 

each template. 
 We take the usual regression estimate 
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where card(j) is the number of lags in the model. 
This formula differs from (4) by the factor 
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which is nearly equal to 1 when T is large enough. 
 
4.3. Robust lag selection 
 
 In this section we show how the lags of a sub-
set auto regression can be determined from N 
multiple data records ),,1,( NkYk K= . The kth 
record ),,( ,1, kTkkk YYY K=  has Tk elements. In our 
experiment there are N = Ni data records associated 
with the ith class. 
 The robust Yule-Walker equations are used to 
estimate the parameters of candidate models in each 
data record. These estimates averaged over N data 
records make the class parameters 2~

Zσ  and Jφ~  
 

( )∑
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ZZ N 1
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 Let the lags in the model at the vth iteration be 
denoted by Jv. We calculate the parameter estimates 

vJφ~ using the equation (16) and section 4.2. Then 
we determine the lags Jv+1 = Jv\ j (lags in Jv with j 
removed) which minimize the loss function 
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The factor β in equation (17) is used to balance the 
effect of the two terms in the loss function. The 
formula used in [1] for ),( jJD v  is 
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estimate of the auto covariance function using 
Y=Yk, see section 4.2. This formula seems to be 
incorrect or some printing mistake might have 
occurred in the original paper. In this formula 

)(ˆ)0(ˆ k
Xkr σ= is a single value and 

vJk ,R̂ is a matrix, 

so ),( jvJD  becomes a matrix while the loss 
function involves it being a single value. Thus, 
considering the main idea used in the definition of 
the loss function, we suggest the alternative formula 
(18). The first term in the loss function indicates 
that it is desirable to omit the lag j which its 
corresponding coefficient )(~ j

vJφ  has the smallest 
absolute value among all lags coefficients and has 
therefore the least effect in constructing the model. 
In the second term through the use of the formula 
suggested for ),( jvJD  we panelize lags associated 
with parameter estimates with large variance. If we 
ignore the factor )0(k̂r  which is equal for all 
candidate lag structures, ),( jvJD  is equal to the 

variance of )(ˆ j
vJφ . In order to understand the role 

of the term ),( jvJD , consider the lags j′ and 

j ′′ whose corresponding parameters )(~2 j
vJ ′φ  and 

)(~2 j
vJ ′′φ  are smaller than all the other parameters, 

and )(~2 j
vJ ′φ ≤ )(~2 j

vJ ′′φ . Now suppose we compute D 

for these lags and see that ),( jvJD ′  is much larger 

than ),( jvJD ′′ . This shows that although )(~2 j
vJ ′φ  ≤ 

)(~2 j
vJ ′′φ , the certainty of the estimation for 

)(~ j
vJ ′φ is lower than for )(~ j

vJ ′′φ  as it has larger 

variance. So, it is more plausible to omit j ′′  instead 
of j′ . The second term in the loss function through 
the use of the tuning factor β gives us the flexibility 
to change the decision in such cases.  
 The procedure described above is repeated for 

1,,2,1 −= mv K  where m is the number of lags in 
the initial model (a full auto regression). Finally, 
the lags of the sub-set auto regression generating 
the data ),,2,1,( NkYk K= is identified by  
 

110 ,,,),(minargˆ
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J
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where RFPE(J) is a robust analogue of the final 
prediction error criterion for multiple data records. 
Here 
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where | J | is the number of lags in J, )(~2 JZσ is the 
estimate of the innovation variance given by (15), 
and γ is chosen equal to 1. 
 
4.4. Spectral function estimation and the 
classification scheme 
 
 In this section we describe the recognition 
scheme based on the spectral functions estimated 
from CSAR model parameters. We assume that Y is 
standardized by an estimate of the scale of X, Xσ̂  
which as stated before, is the sample standard 
deviation in non-robust procedures or is estimated 
by equation (12) for robust algorithms. 
  First we estimate the spectral functions 
associated with the C object classes using the 
training data. The ith class contains Ni independent 
records. We obtain the CSAR model parameters for 
the kth record in the ith class for all values of k. 
Then we calculate the smooth interpolant of the 
spectral function associated with the ith class by 
 

πλφλσλ 20),~,g(~)(f
~ 2 ≤≤= JZi          (21) 
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J
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with estimates of 2
Zσ  and Jφ  given by (15) and (16) 

respectively. It is easy to see that )(f
~

i λ is invariant 
to shifts, rotation, and scale changes when Y is 
standardized. 
 Now, we use these spectral functions to 
classify objects. A distance based classifier is 
suggested for this case in [1] as it appears to give 
better performance than feature based techniques. 
The distance is defined here as 
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Ttt πλ 2= . 
  

)(f̂ λ  is an estimate of the spectral function 
associated with Y that is the observation being 
classified. This is derived from CSAR model fitted 
to Y and spectral function estimated for it 
considering N = 1 in (15) and (16) which leads to  
 

22 ˆ~
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4.5.1. Evaluating the robust parameter 
estimation algorithms through spectral functions 
 
 To evaluate the performance of the robust 
parameter estimation algorithm, we estimate and 
sketch the corresponding spectral functions for 
aircraft templates, see Figs. 14 and 15. The spectral 
function determined by robust techniques is 
denoted by Rf

~
, see Eq. (21), with the corresponding 

non-robust estimate by YWf
~

. It is readily apparent 
that the aircraft silhouettes give a prominent low 
frequency peak in the spectral function. By 
comparing the solid and dashed lines in Fig. 14, we 
see that the non-robust estimates YWf

~
are greatly 

distorted by the presence of outliers, with the 
spectral function becoming more like white noise. 
When robust procedures are used a different pattern 
emerges. Here Rf

~
is relatively unaffected by the 

presence of outliers, with similar shapes in outlier-
free and contaminated data. By comparing Figs. 4 
and 5 we see that robust and non-robust estimates 
are similar in outlier free data. 
 
4.5.2. A classification experiment 
 
 In this section, we first generate and store the 
spectral function parameters Zσ~ and )),(~( JjjJ ∈φ  
associated with each class using the training time 
series. For test data, we estimate and store 
parameters Zσ̂  and )),(ˆ( JjjJ ∈φ  for all test 
records of each class. These training and test data 
are the final data used for the classification task, 
and are generated independently for k = 0 and k = 
12 with s = 0.02. 
 In order to benchmark this new approach 
(based on spectral functions) against Dubois and 
Glanz (DG) approach in [2] (feature based 
approach), we generate DG training and test data 
too, using the feature vector T

ZM )ˆˆ,,,,( 21 σµφφφ K  
where we take M = 5 which is the full model order. 
 To clarify the effect of robust algorithms, all 
the abovementioned training and test data are 
generated using both robust and non-robust 
procedures. We also examine the effect of 
excluding frequencies in the spectral function based 
classifier by taking w(λ) = 1 for 10020 lπλ <≤ , 
with l = 20 and l = 50. In [1], l = 100 has been taken 
instead of l = 50. Because the portion of spectral 
functions located from λ=2π50/100 to λ=2π100/100 
is the mirror image of the portion λ = 0 to λ = 
2π50/100, we take l = 50 instead of l= 100 to reduce 
the computations. 
 The percentages of correctly classified 
templates using 100 unclassified test templates for 
various levels of contamination (k=0 and k=12) are 
summarized in tables 7 – 9 for both robust and non-

robust cases. Confusion matrices are also given in 
tables 10 – 27.  
 It must be noted that, on the contrary with [1], 
we do not use the lag selection procedure in the test 
set, as it reduces the speed of recognition task 
significantly so that it can not be comparable with 
DG approach. The same lag structures obtained for 
training records are used for test records too.   
 For outlier contaminated data (s = 0.02, k= 12) 
we see that non-robust procedures (based on sample 
covariance function) suffer large reductions in 
performance. This is in marked contrast to the 
suggested robust approach which is almost 
insensitive to outliers. For aircrafts, it is readily 
apparent that robust spectral method gives 
significantly better performance than DG approach 
with robust parameter estimation. For machine 
parts, again the spectral approach has better 
performance although the difference between two 
methods is not very big. For letters, on the contrary 
with aircrafts and machine parts, the performance 
of DG approach is better. This shows that for a 
given problem, we can not certainly say which of 
the two methods will give better results and it is 
better to test both methods, however , for problems 
in which the shapes are rather complex (such as 
aircrafts) the use of spectral classifier is preferable.  
 For outlier free data (k = 0) the relative 
performance of the techniques used in this study 
varies slightly according to the templates used, see 
tables 7, 8, and 9. In broad terms, non-robust 
techniques have a little better performance, with 
DG approach giving the best (or equal best ) 
performance. 
 The use of weights with l= 20, has little overall 
effect on classification performance in outlier free 
data, although significantly improved performance 
in outlier contaminated data, see ‘Nut’ in table 8. 
 To gain further insight into the relative 
performance of the techniques under consideration 
we investigate selected confusion matrices. From 
tables 10 – 27, in the case of outlier contaminated 
data, we see that the confusion matrices associated 
with the non-robust spectral approach are greatly 
affected by the presence of outliers, although 
retaining some structure in common with their 
robust analogue. For example ‘Spanner’ in table 19 
is most likely alternative to ‘Bar’. 
 The confusion matrices of the spectral 
approach have similar structures in outlier free data 
for robust and non-robust procedures. Also 
increasing l to 50 has little effect on the 
corresponding confusion matrices. 
 In the case of DG algorithm, a similar pattern 
emerges, with the presence of outliers having a 
large effect on the structure of the confusion 
matrices of non-robust procedures. By comparing 
tables 14 and 15 we see that the structure of the 
confusion matrices associated with the spectral 
approach differs substantially from DG approach.         
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Fig. 14. Estimates of the spectral function YWf

~
for the templates in Fig. 8. The solid line gives the non-robust estimate in outlier free data, 

with the dashed line its value in outlier contaminated data (s = 0.02, k = 12). Here L refers to the frequency 2πL/100. 
 

17 



0 20 40 60
0

0.5

1

1.5

2

L (BUCCANEER)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

0.5

1

1.5

2

2.5

L (F16)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

1

2

3

4

L (GOOSE)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

0.5

1

1.5

2

2.5

L (HARRIER)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

0.5

1

1.5

2

2.5

3

L (HAWKEYE)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

1

2

3

4

L (HERCULES)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

5

10

15

20

L (MIRAGE)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

0 20 40 60
0

1

2

3

4

L (STARSHIP)

S
P

E
C

TR
A

L 
FU

N
C

TI
O

N

 
 

 
Fig. 15. Estimates of the spectral function Rf

~
for the templates in Fig. 8. The solid line gives the robust estimate in outlier free data, with the 

dashed line its value in outlier contaminated data (s = 0.02, k = 12). Here L refers to the frequency 2πL/100. 
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The later increasing the likelihood of contamination 
by large aberrant observations (outliers). The shape 
classification systems were mainly based on the 
CAR model parameter representation of two-
dimensional shape boundaries. In order to obtain 
the boundary samples from which the CAR model 
parameters were estimated, a boundary 
approximation scheme was developed to determine 
the lengths of N equiangularly spaced radius 
vectors projected between the boundary centroid 
and the boundary. This scheme accurately 
represents convex shapes and complicated concave 
shapes. Because of the properties of the boundary 
approximation scheme and the CAR model itself, 
the parameters of the CAR model are 
approximately invariant to shape size, and 
translational and rotational position. Two feature 
based pattern recognition schemes were 
implemented and studied in noise-free environment. 
In the contaminated environment, circular sub-set 
auto regressions with robust lag selection and 
parameter estimation were used to estimate the 
spectral function associated with object boundaries 
and classify unknown templates using a ‘distance’ 
based classifier. The suggested robust approach 
substantially outperforms non-robust techniques 
(based on the sample covariance function) which 
suffer catastrophic reductions in performance in 
outlier contaminated data. It was shown that the 
robust lag selection procedure is quite advantageous 
for a wide range of templates in contaminated 
environment.     
 In our experiment we did not use the lag 
selection procedure in the test set because of the 
significant speed reduction. However it can be 
shown, see [1], that performing lag selection in the 
test set, adapts the model structure to the data and is 
well suited to classification problems where 
sensitivity to clutter is important. 
 According to our results we can generally say 
that the CAR model parameters are useful shape 
descriptors for recognition purposes. We obtained 
successful classification results for a wide range of 
convex and concave shapes in various sizes and 
spatial positions by the direct use of these 
parameters or using them for estimating spectral 
functions. In noise free environment we saw that 
the model order of each individual shape sample 
does not have to be determined for accurate 
recognition and shapes can be successfully 
classified by the use of CAR models of order lower 
than optimum. However the lag selection procedure 
introduced in section 4.3 can be used in problems 
that are sensitive to the model order. 
 We did also some testing of the performance 
of our algorithms on deformed shapes. Although 
our results were not very satisfactory, the CAR 
model parameters can be potentially used for these 
problems too and further studies may lead to much 
better results. It is noted that there is a tradeoff 

between sensitivity to the main shapes and 
insensitivity to deformation and this tradeoff is 
implicit in any effort to recognize deformed shapes. 
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2. Boundary Sampling 
 
 
 

TimeSeries.m 

function [r_t]=TimeSeries(Boundary,AngleNo) 
%function [r_t, Intersections]=TimeSeries(Boundary,AngleNo) 
Centroid=round(mean(Boundary)); 
N=[0:fix(AngleNo/4)-1]; 
Slopes=tan(2*pi*N/AngleNo); 
MaxSlopeNo=size(Slopes,2)+1; 
Slopes(MaxSlopeNo)=10000; % a large value for tan(pi/2) 
OldSlopeNo=MaxSlopeNo+1; 
r_t=[]; 
counter=0; 
%Intersections=[Centroid(1) Centroid(2)]; 
i=1; 
InitializationFlag=0; 

 
     
         
             
             

             
         
     
             
                 
                 

                                 
             
                        
                 
                 
                      
                 
                 
                 
                     
                 
             
                 
                 
                 
                 
                     
                          
                    =SlopeNo0+1; 
                    RSD0=s-Slopes(SlopeNo0); 
                    RSD1=s-Slopes(SlopeNo1);             
                    if OldSlopeNo~=SlopeNo1 
                        r_t(end+1)=norm(Boundary(i,:)-Centroid); 
                        OldSlopeNo=SlopeNo1; 
%                        Intersections(end+1,:)=Boundary(i,:); 
                    end 
                else if (SD1*RSD1)<0 
                        m=find(Slopes <= s); 
                        SlopeNo0=m(end);     
                        SlopeNo1=SlopeNo0+1; 
                        RSD0=s-Slopes(SlopeNo0); 
                        RSD1=s-Slopes(SlopeNo1); 
                        if OldSlopeNo~=SlopeNo0 
                            r_t(end+1)=norm(Boundary(i,:)-Centroid); 
                            OldSlopeNo=SlopeNo0; 
%                            Intersections(end+1,:)=Boundary(i,:); 
                        end 
                    end 
                end 
            end 
        end 
    end 
    i=i+1; 
end 
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3. Boundary Modeling 
 

 
3.1. Circular Full Auto Regressive Model of order m 
 
• The formulas presented in section 2.3 are used in this program.  
• This program was used in noise-free environment (section 3). 
• Instead of this program we can use the next program (CSARModel.m) choosing J = (1, 2, …, m).  
 

CFARModel.m 

function [Theta, Alpha, Beta]=CFARModel(r_t, M) % M = Model Order 
N=size(r_t,2); 
for i=1:M 
    Zt_1(i,:)=circshift(r_t,[0 i]); 

 
 

 

 
(1:M); 

Alpha=ThetaAlpha(end); 
Beta=sum( (r_t - ThetaAlpha' *Ut_1).^2 ) /N; 

 
  
 
 
3.2. Circular Sub-set Auto Regressive Model 
 
• The Yule-Walker equation is used in this program with non-robust estimations (based on sample 

covariance function). 
• This program was used in section 4 wherever non-robust procedures were desired.  

 
CSARModel.m 

function [Phi_hat,Sigma2_hat]=CSARModel(Y, J)  
T=size(Y,2); 
M=size(J,1); 
r_hat0=Autocovariance(Y,0); 
R_hat=r_hat0*eye(M); 
for i=1:M 
    r_hat(i,1)=Autocovariance(Y,J(i)); 
    for j=i+1:M 
        R_hat(i,j)=Autocovariance( Y, abs(J(i)-J(j)) ); 
    end 
end 
R_hat=R_hat+(triu(R_hat,1))'; 

 
 

 
Myu=mean(Y); 
N=size(Y,2); 
Ac=( Y - Myu )*( circshift(Y,[0 Lag]) - Myu )'/N ; 

 
 
 
 

3.3.  Robust Circular Sub-set Auto Regressive Model 
 

• The Yule-Walker equation is used in this program with robust estimations given by Eqs. (9), (10), (11), 
and (12). 

• This program was used in section 4 wherever robust procedures were desired.  
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RobustCSARModel.m 

function [Phi_hat,Sigma2_hat]=RobustCSARModel(Y, J, f)  
T=size(Y,2); 
M=size(J,1); 
Myu_hat=median(Y); 
SigmaX_hat=1.483*median(abs(Y-Myu_hat)); 
r_hat0=RobustAc(Y, Myu_hat, SigmaX_hat, 0, f); 
R_hat=r_hat0*eye(M); 
for i=1:M 
     
    
     
    
end 
R_hat=R_hat+(triu(R_hat,1))'; 
Phi_hat = inv(R_hat)*r_hat ; 
Sigma2_hat=(T-M)/(T-2*M-1)*(r_hat0-sum(Phi_hat.*r_hat)); 
 

 

 

)); 
c_hat=Psi*( circshift(Psi,[0 Lag]) )'/T; 
c_hat0=Psi*Psi'/T ; 
RAc= SigmaX_hat^2 * c_hat/c_hat0; 

 
 
 
 
4. Lag Selection 
 
 

LagSelection.m 

load Letters\Arial\Data\Noisy\TrainSeries 
load Letters\Arial\Data\HubersParameter 
 
M_Init=20;  % Initial Model Order 
Beta=0.2;   % Balance factor in Loss Function 
J=[]; 

     
   ; 
    J(1:size(RLags,1),end+1)=RLags; % since lag structuers have different sizes, gaps are filled by 0 
    M(i)=size(RLags,1); % Store the size of each lag structure 
    i 
end                               
% save('Letters\Arial\Data\Noisy\RobustLags','J','M'); 

 
 

RobustLags.m 

function RLags=RobustLags(Y,T,f,M,Beta) 
Gama=1; 
Jv=([1:M])'; 
CandidateLags=Jv; 
N=size(Y,1); 
for v=1:M-1 
    for k=1:N 
        if v==1 
            Yk=Y(k,1:T(k)); 
            SigmaX_hat(k)=1.483*median(abs(Yk-median(Yk))); 
        end 
        Yk=Y(k,1:T(k)); 
        [Phi(:,k) SigmaZ2(k)]=RobustCSARModel(Yk/SigmaX_hat(k),Jv,f); 
     
     
         
         
         
       
     
        SigmaZ2_tilda(v)=SigmaZ2; 
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        LossFunction=Beta*log10(Phi.^2); 
    end 
    [u j]=min(LossFunction); 
    Jv(j(1))=[]; 
    CandidateLags(1:M-v,end+1)=Jv; 
    clear Phi; 
    v 
end 
RFPE=SigmaZ2_tilda.*( 1 + Gama*([M:-1:2]+1)/sum(T) ); 
[u j]=min(RFPE); 
m=find(CandidateLags(:,j)>0); 
RLags=CandidateLags(1:m(end),j); 

 
 
 
5. Training and Test data generation 
 

5.1. Generating Training and Test series   
 

• This program generates clean Training and Test time series. 
 

TSGenerator.m 

Image(:,:,1)=~imread('Letters\BookAntiqua\G','bmp'); 
Image(:,:,2)=~imread('Letters\BookAntiqua\H','bmp'); 
Image(:,:,3)=~imread('Letters\BookAntiqua\I','bmp'); 
Image(:,:,4)=~imread('Letters\BookAntiqua\J','bmp'); 
Ntrain=100;     % Number of training data 
AngleNo=76;     % Number of angles for sampeling(it must be a multiple of 4) 
ScaleFactor=round(unifrnd(70,130,[1 Ntrain]))/100;  %Images are scaled from 70% up to 130%  
RotationAngles=randperm(360);           %Images are rotated from 0d up to 360d. For Ntrain > 360 another... 
RotationAngles=RotationAngles(1:Ntrain);% ... random generator function must be used 
    
C=size(Image,3);    % Number of classes 
Xt=[]; 
for i=1:Ntrain 
    ScaledIm=imresize(Image,ScaleFactor(i)); 
    RotatedScaledIm=imrotate(ScaledIm,RotationAngles(i),'bicubic'); 
    
         
         
        
         
        T(i,j)=size(r_t,2); 
        j 
    end 
    i 
end 
% save('Letters\BookAntiqua\Data\Clean\TestSeries','Xt','T') 
% save('Letters\BookAntiqua\Data\Clean\SigmaX','SigmaX') % SigmaX may not be needed    

 
 
 
• This program adds contamination to the clean time series. 
 

DataContaminator.m 

load Letters\Arial\Data\Clean\TrainSeries 
%load Letters\Arial\Data\Clean\TestSeries 
 
SigmaN=4; 
k=12; 
s=0.02; 
% Notice! comment the specified lines when use this program for generating test data 
NoisyData=zeros(size(Xt)); 
ContaminatedData=zeros(size(Xt)); 
for i=1:size(Xt,1) 
    for j=1:size(Xt,3) 
        X=Xt(i,1:T(i,j),j); 
         
        
         

 



        
         
        Myu_hat=median(Y);                          % Comment 
        SigmaX_hat=1.483*median(abs(Y-Myu_hat));    % Comment 
        F(i,j)=max(abs((X-Myu_hat)/SigmaX_hat));    % Comment 
         
        A=[zeros(1,T(i,j)-fix(s*T(i,j))) sign(unifrnd(-1,1,[1 fix(s*T(i,j))]))];  
        A=A(randperm(T(i,j))); 
        SigmaX=sqrt(var(X)); 
        Y=X + N + k*SigmaX*A;       
        m=find(Y<0); 
        Y(m)=0; 
        ContaminatedData(i,1:T(i,j),j)=Y;        
    end 
end 
% Yt=NoisyData; 
% save('Letters\Arial\Data\Noisy\TrainSeries','Yt','T'); 
% Yt=ContaminatedData; 
% save('Letters\Arial\Data\Contaminated\TrainSeries','Yt','T'); 
% F=max(F);                                       % Comment 
% save('Letters\Arial\Data\HubersParameter','F');     % Comment 
 
% Y1=Xt(i,1:T(i,j),j); 
% Y2=NoisyData(i,1:T(i,j),j); 
% Y3=ContaminatedData(i,1:T(i,j),j); 
% stairs(Y1) 
% figure,stairs(Y2) 
% figure,stairs(Y3) 

 
 
 

5.2. Generating data for Dubois and Glanz approach 
 

• This program generates Training or Test data for noise-free environment using CFARModel.m. 
• This program was used in section 3. 
  

TrainDataGenerator.m 

Image(:,:,1)=~imread('Letters\BookAntiqua\G','bmp'); 
Image(:,:,2)=~imread('Letters\BookAntiqua\H','bmp'); 
Image(:,:,3)=~imread('Letters\BookAntiqua\I','bmp'); 
Image(:,:,4)=~imread('Letters\BookAntiqua\J','bmp'); 
Ntrain=25;  % Number of training data 
M=2;        % Model Order 

  
RotationAngles=randperm(360);           %Images are rotated from 0d up to 360d. For Ntrain > 360 another... 
RotationAngles=RotationAngles(1:Ntrain);% ... random generator function must be used 
    
C=size(Image,3);    % Number of classes 
for i=1:Ntrain 
     
     
     
          
         
         
        Xtrain02(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 3); 
        Xtrain03(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 4); 
        Xtrain04(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 5); 
        Xtrain05(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 6); 
        Xtrain06(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 7); 
        Xtrain07(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 8); 
        Xtrain08(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 9); 
        Xtrain09(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        [Theta, Alpha, Beta]=CARModel(r_t , 10); 
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        Xtrain10(:,i,j)=[Theta; Alpha/sqrt(Beta)]; 
        j 
    end 
    i 
end 

 
 
 

• This program generates Training and Test data for contaminated environment using CSARModel.m and 
RobustCSARModel.m 

• The robust part must be commented when non-robust data is desired. 
 

DGDataGenerator.m 

load Letters\Arial\Data\Contaminated\TrainSeries 
% load Letters\Arial\Data\Contaminated\TestSeries 
load Letters\Arial\Data\HubersParameter 
M=5;    % Full Model Order 
 
% Notice! The robust part must be commented when non-robust data is desired 
J=([1:M])'; 
for i=1:size(Yt,1) 
    for j=1:size(Yt,3) 
        Y=Yt(i,1:T(i,j),j); 
         
        % Non-Robust ----------------------------------- 
%         [Phi_hat SigmaZ2_hat]=CSARModel(Y,J); 

         
         
         
        Myu_hat=median(Y); 
 
        X(:,i,j)=[Phi_hat ; Myu_hat/sqrt(SigmaZ2_hat)]; 
    end 
end 
% Xtrain=X; 
% save('Letters\Arial\Data\Contaminated\RobustDGXtrain','Xtrain') 
 
% Xtest=X; 
% save('Letters\Arial\Data\Contaminated\RobustDGXtest','Xtest') 

 
 

5.3. Generating data for Spectral function approach 
 

• This program generates Training data for spectral approach using CSARModel.m and 
RobustCSARModel.m 

• The robust part must be commented when non-robust data is desired. 
  

SFArgumentsEstimator.m 

load Aircrafts\Data\Contaminated\TrainSeries 
load Aircrafts\Data\Contaminated\RobustLags 
load Aircrafts\Data\HubersParameter 
 
Phi_tilda=[];  
SigmaZ2_tilda=[]; 
% Notice! The robust part must be commented when non-robust data is desired 
for j=1:size(Yt,3); 
    
    
        
        
         
        
        [Phi(:,i) SigmaZ2(i)]=CSARModel(Y/SigmaX_hat,Jj); 
        % Robust --------------------------------------------------- 
%         SigmaX_hat=1.483*median(abs(Y-median(Y))); 
%         [Phi(:,i) SigmaZ2(i)]=RobustCSARModel(Y/SigmaX_hat,Jj,F(j)); 
         
    end 
    Phi_tilda(1:size(Phi,1),j)=mean(Phi,2); 
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    SigmaZ2_tilda(j)=mean(SigmaZ2); 
    clear Phi 
    j 
end 
% save('Aircrafts\Data\Contaminated\NonRobustTrainSFArgs','Phi_tilda','SigmaZ2_tilda'); 

 
 
 

• This program generates Test data for spectral approach using CSARModel.m and RobustCSARModel.m 
• The robust part must be commented when non-robust data is desired. 

 
SFArgumentsEstimator Test.m 

load Aircrafts\Data\Contaminated\TestSeries 
load Aircrafts\Data\Contaminated\RobustLags 
load Aircrafts\Data\HubersParameter 
 
Phi_hat=[];  
SigmaZ2_hat=[]; 
% Notice! The robust part must be commented when non-robust data is desired 
for j=1:size(Yt,3); 
     
     
         
        
         Non-robust ----------------------------------------------- 
        SigmaX_hat=sqrt(var(Y)); 
        [Phi_hat(1:M(j),i,j) SigmaZ2_hat(i,j)]=CSARModel(Y/SigmaX_hat,Jj); 
        % Robust --------------------------------------------------- 
%         SigmaX_hat=1.483*median(abs(Y-median(Y))); 
%         [Phi_hat(1:M(j),i,j) SigmaZ2_hat(i,j)]=RobustCSARModel(Y/SigmaX_hat,Jj,F(j)); 
         
    end 
    j 
end 
% save('Aircrafts\Data\Contaminated\NonRobustTestSFArgs','Phi_hat','SigmaZ2_hat','T'); 

 
 
 
6. Classifiers 
 
 

6.1. Bayes optimal classifier with Gaussian parametric estimation of PDFs 
 

BayesClassifier.m 

% Minimm error Bayes classifier------------------------------------------------------------- 
load Letters\Arial\Data\Contaminated\RobustDGXtrain 
load Letters\Arial\Data\Contaminated\RobustDGXtest 
%Xtrain(:,21:end,:)=[]; % Reducing the size of training set 
 
[L Ntrain C]=size(Xtrain); 
Ntest=size(Xtest,2); 
Pw(1:C)=1/C;    % a priori class distr bution   
 
[Myu,Sigma]=MLPdfEstimator(Xtrain); 

 
     
     

 
 

 
for k=1:Ntest 
    for i=1:C 
        for j=1:C 
            difference=Xtest(:,k,i)-Myu(:,1,j); 
            f_xk_w(j)=exp(-0.5*difference' * SigmaInv(:,:,j) * difference) / const(j); 
        end 
        [m,J]=max(Pw.*f_xk_w); 
        Confusion(i,J)=Confusion(i,J)+1; 
    end 
end 
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Confusion=100*Confusion/Ntest;    
AverageCorrect=sum( diag(Confusion) )/C 
 
% Computing Classification Error (optional!) 
% Error=zeros(C,C); 
% for k=1:Ntrain 
%     for i=1:C 
%         for j=1:C 
%             difference=Xtrain(:,k,i)-Myu(:,1,j); 
%             f_xk_w(j)=exp(-0.5*difference' * SigmaInv(:,:,j) * difference) / const(j); 
%         end 
%         [m,J]=max(Pw.*f_xk_w); 
%         Error(i,J)=Error(i,J)+1; 
%     end 
% end 
% Error=(Error-diag(diag(Error)))/Ntrain; 
% AveragePrError=sum(sum(Error))/C 

 
 

MLPdfEstimator.m 

 

 
 

    for k=1:Ntrain 
        Sigma(:,:,i)=Sigma(:,:,i) + (Xtrain(:,k,i)-Myu(:,1,i)) * (Xtrain (:,k,i)-Myu(:,1,i))' ; 
    end 
end 
Sigma=Sigma/(Ntrain-1); 

 
 
 

6.2. Linear classifier based on L(L-1)/2 hyper planes 
 

L L 1LinearClassifier.m 

%Linear classifier based on L(L-1)/2 hyperplanes-------------------------------------------- 
load Aircrafts\Data\Clean\Dubois_Glanz\Xtrain05 
load Aircrafts\Data\Clean\Dubois_Glanz\Xtest05 
%Xtrain(:,11:end,:)=[]; 
 
[L Ntrain C]=size(Xtrain); 
Ntest=size(Xtest,2); 
Pw(1:C)=1/C;        % A priori class distribution 
Tolerance=0.01;     % Accuracy of W 
 
k=1; 

   
        
        
   

     
zeros(C,(C+1)); 

Xtst=[ones(1,Ntest,C);Xtest]; 
for i=1:C 
    g_x = W' * Xtst(:,:,i); 
    [PosI PosK]=find(g_x >= 0); 
    [NegI NegK]=find(g_x < 0); 
    rowP=MapI(PosI); 
    columnN=MapJ(NegI); 
    VotesMat=zeros(C,Ntest); 
    for k=1:size(PosI) 
        VotesMat(rowP(k),PosK(k))=VotesMat(rowP(k),PosK(k))+1; 
    end 
    for k=1:size(NegI) 
        VotesMat(columnN(k),NegK(k))=VotesMat(columnN(k),NegK(k))+1; 
    end 
    [MajorityVote,ClassNo]=max(VotesMat); 
    ClassNo(find(MajorityVote==1))=C+1; 
    for j=1:Ntest 
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        Confusion(i,ClassNo(j))=Confusion(i,ClassNo(j))+1; 
    end 
end 
Confusion=100*Confusion/Ntest; 
AverageUnKnown=sum(Confusion(:,C+1))/C 
temp=Confusion; 
temp(:,C+1)=[]; 
AverageCorrect=sum( diag(temp) )/C 

 
 

LinearSeparator.m 

function [W]=LinearSeparator(Class1,Class2,Tolerance) 
[L N1]=size(Class1); 
N2=size(Class2,2); 
Z=([ones(1,N1) -ones(1,N2);Class1 -Class2])'; 
Myu1=sum(Class1,2)/N1; 
Myu2=sum(Class1,2)/N2; 
%Initial Values ------------- 
Bt=rand(N1+N2,1); 
w0=0.5; 
Wt=[w0;(Myu1-Myu2)];  
Ro=0.01; 
%---------------------------- 
error=100; 

 
    
     
     
    =Wtt; 
    Bt=Btt; 
end 
W=Wt; 

 
 
 
 

6.3. Spectral classifier  
 
• In this program lag selection is not employed in the test set.  

 
SpectralClassifier.m 

load Aircrafts\Data\Contaminated\NonRobustTrainSFArgs 
load Aircrafts\Data\Contaminated\NonRobustTestSFArgs 
load Aircrafts\Data\Contaminated\RobustLags 
L=20;   % Limmiting frequency to Landa=2*pi*L/100 
load Letters\Arial\Data\Clean\RobustTrainSFArgs 
load Letters\BookAntiqua\Data\Clean\RobustTestSFArgs 
load Letters\Arial\Data\Noisy\RobustLags 
 
C=size(Phi_hat,3);   % Number of classes 
N=size(Phi_hat,2);   % Number of test data in each class 

 
 

   
        
         
        r=1:C 
            f_tilda=SigmaZ2_tilda(r) * g(Phi_tilda(1:M(r),r), Landa, J(1:M(r),r)); 
            dw_tilda_hat=sum( h( f_tilda./f_hat ) ) / size(Landa,2); 
            dw_hat_tilda=sum( h( f_hat./f_tilda ) ) / size(Landa,2);;         
            Dw_bar(r)= dw_tilda_hat + dw_hat_tilda; 
        end 
        [u I]=min(Dw_bar); 
        Confusion(k,I)=Confusion(k,I)+1; 
    end 
    k 
end 
AverageCorrect=mean(diag(Confusion)) 
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• In this program lag selection is employed in the test set. 
 

SpectralClassifierWithLS.m 

load Aircrafts\Data\Contaminated\RobustTrainSFArgs 
load Aircrafts\Data\Contaminated\RobustLags 
load Aircrafts\Data\HubersParameter 
load Aircrafts\Data\Contaminated\TestSeries 
L=20;   % Limmiting frequency to Landa=2*pi*L/100 
M_Init=30;  % Initial Model Order(for lag selection in test data) 
Beta=0.2;   % Balance factor in Loss Function( // ) 
 
C=size(Yt,3);   % Number of classes 
N=size(Yt,1);   % Number of test data in each class 
Confusion=zeros(C,C); 
g=inline('1./(2*pi*(abs(1-sum((Phi_tilda*ones(1,size(Landa,2))).*exp(-i*J*Landa)))).^2)','Phi_tilda','Landa','J'); 
h=inline('(x-1).^2','x'); 

 
   
         
        
         
 
        % Non-Robust -------------------------------------------------- 
%         SigmaX_hat=sqrt(var(Y));        

          
         
                 
         
        
        SigmaZ2_hat * g(Phi_hat, Landa, Lags); 
        for r=1:C 
            f_tilda=SigmaZ2_tilda(r) * g(Phi_tilda(1:M(r),r), Landa, J(1:M(r),r)); 
            dw_tilda_hat=sum( h( f_tilda./f_hat ) ) / size(Landa,2); 
            dw_hat_tilda=sum( h( f_hat./f_tilda ) ) / size(Landa,2);;         
            Dw_bar(r)= dw_tilda_hat + dw_hat_tilda; 
        end 
        [u I]=min(Dw_bar); 
        Confusion(k,I)=Confusion(k,I)+1; 
    end 
    k 
end 
AverageCorrect=mean(diag(Confusion)) 

 
 
 
 
7. Evaluating the robust parameter estimation algorithms through spectral functions 

 
 

• This program is used in section 4.5.1 to estimate the spectral functions shown in Figs. 14 and 15.  
• It must be noted that here we use the lag structure obtained for noisy data (k=0) for contaminated data 

(k=12) too, as we want to examine only the performance of robust parameter estimation procedure 
(section 4.2) 

     
SFTest.m 

load Aircrafts\Data\Noisy\RobustTrainSFArgs 
Phi_tilda1=Phi_tilda; 
SigmaZ2_tilda1=SigmaZ2_tilda; 
load Aircrafts\Data\Contaminated\TrainSeries 
load Aircrafts\Data\Noisy\RobustLags 
load Aircrafts\Data\HubersParameter 
  
Phi_tilda2=[];   
SigmaZ2_tilda2=[]; 
for j=1:size(Yt,3); 
    Jj=J(1:M(j),j); 
    for i=1:size(Yt,1) 
        Y=Yt(i,1:T(i,j),j); 
 
        % Non-Robust ---------------------------------------------- 
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%         SigmaX_hat=sqrt(var(Y)); 
%         [Phi(:,i) SigmaZ2(i)]=CSARModel(Y/SigmaX_hat,Jj); 
         
        
         
       
    
     
    SigmaZ2_tilda2(j)=mean(SigmaZ2); 
    clear Phi 
    j 
end 
% Once the parameters have been estimated all the lines above can be commented  
% Spectral function estimation and show ------------------------------  
g=inline('1/(2*pi*(abs(1-sum(Phi_tilda.*exp(-i*Landa*J))))^2)','Phi_tilda','Landa','J'); 
k=8;    % Number of class being tested: 1:Buccaneer 2:F16 ... 8:Starship 
Jk=J(1:M(k),k); 
 
Phik1=Phi_tilda1(1:M(k),k); 
Sigk1=SigmaZ2_tilda1(k); 
Phik2=Phi_tilda2(1:M(k),k); 
Sigk2=SigmaZ2_tilda2(k); 
 
Landa=[0:2*pi/100:2*pi*50/100]; 
L=[1:51]; 
for i=1:size(Landa,2) 
    f1(i)=Sigk1*g(Phik1,Landa(i),Jk); 
    f2(i)=Sigk2*g(Phik2,Landa(i),Jk);     
end 
plot(L,f1,'-',L,f2,':r'); 
xlabel('L (STARSHIP)'); 
ylabel('SPECTRAL FUNCTION'); 
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