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Abstract

In this project we consider the problem of
classifying objects wusing their two-dimensional
silhouettes in noise-free environments as well as
environments generating large aberrant observations
(outliers). We concentrate on fast classification
algorithms for near real-time applications. In order to
obtain acceptable results in both environments, two
independent classifying methods are presented and
examined through three sets of shape. Both these
methods are generally based on the use of circular
autoregressive (CAR) model parameters which
represent the shape of the boundaries detected in
digitized binary images of the objects. Robust
parameter estimation and lag selection procedures are
introduced and used in contaminated environment. All
object identification techniques are insensitive to object
size and orientation.

All techniques and algorithms are implemented
with MATLAB and contaminations are generated
artificially.

1. Introduction

Recognizing two or three dimensional objects is
a central problem in machine vision, with
applications to aircraft identification, medical
diagnosis from cell characteristics, hand written
character recognition, automatic inspection of
industrial processes, and so on. We focus on
techniques based on two dimensional boundary
information of shapes whose boundary does not cross
itself. Shape information is obtained by the use of a
circular autoregressive (CAR) model representing the
objects boundary.

Section 2 describes the boundary modeling used
in our all algorithms. In section 3 the classification
problem in noise-free environment is considered. The
feature extraction procedure based on model
parameter estimates is carried out in section 3.1. Two
fast classifiers are introduced in section 3.2 and their
performance is tested in section 3.3. Section 3.4
examines the ability of our approach in recognizing
deformed shapes.

Classification in contaminated environment is
the subject of section 4. The model is introduced in
section 4.1. Robust parameter estimation and lag
selection algorithms are presented in sections 4.2 and
4.3. A new classification approach based on spectral
functions estimated from model parameters is
explained in section 4.4. In section 4.5 we indicate
the insensitivity of robust methods to outliers through
some spectral function diagrams. The classification
algorithms are also tested in this section. Finally, we
summarize the conclusions in section 5.

2. The Boundary Model

Our shape description technique is based on the
use of a full circular autoregressive (CAR) model of
order M in noise-free environment and a circular sub-

set autoregressive (CSAR) model in contaminated
environment. An autoregressive model is a
parametric equation that expresses each sample of an
ordered set of data samples as a linear combination of
a specified number of previous samples from the set
plus an error term.

The autoregressive model can be used to express
a polygonal approximation of a two-dimensional
object boundary. With appropriate boundary
sampling, functions of the model parameters are
invariant to rotation, translation, and scaling of the
boundary and can be used as shape descriptors.

In order to obtain CAR model parameters of a
given shape, we must first extract its boundary. Then
the boundary is approximated by a sequence of
ordered samples and represented by a set of CAR
model parameters. These procedures are what we are
going to explain in sections 2.1-2.3.

2.1. Boundary Extraction

Suppose we have an isolated black and white
image of an object (e.g. black object in a white
background). Driving this image from the original
image taken by camera might need some
preprocessing that is not the subject of this project. In
order to extract the boundary of this image we
suggest this simple algorithm

1) Find the topmost pixel of the object and
store it as a boundary point. Also choose
this point as starting point.

2) Define eight different directions to access all
neighbor pixels of current point and order
them in clockwise direction starting at left
direction (see Fig. 1). Choose direction (1)
as current direction.

3) Check the current point neighbor pixel in
current direction.

If it does not belong to the object, check the
pixel in next direction. Repeat this until you
reach to a pixel which belongs to the object.
Store this pixel as a boundary point and
choose its access direction as current
direction. Also choose this point as current
point.

Else if it belongs to the object, check the
pixel in previous direction. Repeat this until
you reach to a pixel not in the object. Store
the last detected object pixel as a boundary
pixel and choose its access direction as
current direction. Also choose this point as
current point.

4) If the current point is not the starting point,
go back to step 3), other wise delete this last
stored point and terminate the program.

This algorithm is shown graphically for a few steps
in Fig. 1. As we can see in this figure, pixels around
the current pixel are checked one by one until an Off-
to-On or On-to-Off transition occurs in the state of



pixels. This transition indicates a pass through the
object boundary.
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Fig 1. Few steps of the boundary extraction procedure

Performing morphological ‘removing’ operation
on our black and white image or applying some edge
detection algorithms will also leave the object
boundary. These operations are provided in
MATLAB and in some cases might have better
results than our algorithm. However, because we
need to have an ordered sequence of boundary points,
we must do some further processing on the boundary
detected by these functions to generate our desired
boundary sequence. This extra processing will be
almost similar to our own algorithm that detects the
boundary and generate its points sequence
simultaneously. Therefore we prefer to use our own
simple algorithm.

We might encounter some problems when we
use this algorithm for objects including very sharp
(needle shaped) parts on their boundary. These parts
might not be detected by our algorithm, so if the
stating point lies on one of these parts the procedure
won't terminate. Another problem can be made by
objects which have some holes so near to their
boundary that there is just one pixel separating inside
the hole and outside the boundary. In such cases,
following our algorithm, we might lose the object
boundary and enter the hole. The detected boundary
will then circle itself round the hole and the

procedure won't terminate again. In practice such
holes can be generated by noise in shapes containing
two parts too close to each other (deep narrow
concavities in the object). In the presence of noise,
these parts can be easily connected to each other and
leave a hole inside the object. As shown in Fig. 2
this problem is encountered in ‘Goose’ (see aircraft
templates in Fig. 8) when it is rotated (or scaled) over
particular degrees.
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Fig. 2. Noise generated holes

In order to prevent such undesirable effects, we
perform a special pre-filtering on images before
starting the boundary extraction process. This
filtering task includes two steps. First we remove all
those object pixels which have less than or equal to
three pixels in their neighborhood. This step almost
eliminates all troublesome sharp parts. Then we
perform a morphological ‘closing” operation
(‘dilation’ followed by ‘erosion’) on the image
obtained from previous step. In this step, the above-
mentioned noise generated holes are filled
completely if they are narrow enough, or at least the
separating part between them and outside the object
is widened. In both these cases, holes are not detected
at all by our algorithm and can not make any
problem.

2.2. Boundary Representation [2]

In order to construct a shape model, model
parameters are estimated from a data set of boundary
samples. The boundary extracted in previous section
is approximated by an ordered sequence of the
lengths of N angularly equispaced radius vectors
projected between the boundary centroid and the
boundary, as shown in Fig. 3.

Fig. 3. Boundary approximation

This boundary approximation can be improved
by increasing the number of radius vector projections
N. The radius vector lengths 7 are a function of the



angle of projection @ = 127/N, where f = 1, 2, ..., N,
and the function 7(®) forms a one-dimensional
boundary approximation. As Fig. 4 shows this
ordered set of numbers, 7, can also be expressed as a
“time series” r(?), with the parameter 7 describing the
position of a radius vector in equiangular increments
from the starting point. It is clear that for closed
boundaries this is a periodic time series.
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Fig. 4. Plot of r(t) versus ¢ for the shape in Fig.

By considering a more complicated boundary
than the one shown in Fig. 3 an initial problem of this
sampling method is clarified. For non-convex
boundaries the time series described above becomes
a multi-valued function. Dubois and Glanz [2]
developed an algorithm that “unwraps” the boundary
and “stretches” the multi-valued function to produce
a one-dimensional function 7(?). This scheme
searches sequentially a long the boundary until a
radius vector crossing is detected and measures the
length. To determine the next ordered length, the
sequential boundary search is continued until another
radius vector crossing is detected. Thus the radius
vector lengths are ordered according to the order of
detection 7. The sequence of boundary points was
generated in section 2.2, so here, we check boundary
points one by one to detect radius vector crossings
and store successively the lengths of vectors. This
new scheme also produces a periodic or circular time
series but obviously with a longer period 7. Fig. 5
shows this procedure.

MThaeaas
()
=
\
-

| =6
T=24
N=16

Fig 5. Concave shape radius vectors and its unwrapped time series

The practical application of this scheme to non-
convex shapes requires some certain assumptions
that are described below.

If N radius vectors are projected between the
boundary centroid and the boundary, this scheme
always detects more than N radius vector-boundary
intersections for a non-convex shape. The number of
intersections varies slightly for identically shaped
objects in different rotational positions. If N is large

enough, the variation of the number of intersections
is small compared to the total number of intersections
and does not affect the model invariability to
rotation.

If the boundary of an object has segments that
are straight lines, certain rotations of the object may
cause many consecutive points of a line segment to
intersect single radius vector, as shown in Fig. 6. If
all of the lengths along a radius vector to boundary
points of such a line segment are included in the time
series, the least square fit of the CAR model to the
time series will be biased. Also a slight rotation of
the shape results in the entire line segment points
being undetected, and the model parameters are
estimated from a much smaller number of
observations.

Line segment

Fig. 6. Example of collinear radius vector and boundary segment

To prevent this situation, we allow only one radius
vector-boundary intersection between consecutive
boundary points and a particular radius vector.

The algorithm proposed in [2] for implementing
this scheme is described here (with some changes)
through the following steps.

1) Choose the number of radius vectors N to
project from the boundary centroid. This
number is assumed to be an integral
multiple of four (¥ = 4k, k ¢ N)to simplify

the algorithm in next step.

2) Calculate and store the magnitude of the
radius vector slopes for the first quadrant.
Because we use an ordered sequence of
boundary points to obtain an ordered set of
radius vector-boundary intersection lengths,
we need not determine the actual quadrant
in which a radius vector lies. Since N is
assumed to be an integral multiple of four,
the magnitudes of slopes of radius vectors in
all other quadrants are equal to those of the
first quadrant.

3) Begin the search at the starting boundary
point Py = (x1. ).

4) Compare this point with the centroid C =
(xo ¥o)- If xjequals x,, the starting point is an
intersection point with a vertical radius
vector, or if yjequals y., the starting point is
an intersection point with a horizontal radius
vector. If any of these cases occurs, skip
steps 5) - 7) and jump to step 8), otherwise
proceed to step 5).

5) Calculate the slope magnitude of the line
containing the centroid and the starting point
as follows:



6)

7)

8)

9)

a.

From the array of slopes find the two slopes
between which the calculated slope lies.
Suppose they are Slope(i) and Slope(i+1) of
the radius vectors 7 and 7+1 (see Fig. 7).
These two slopes define a sector.

Calculate the differences, RSD1 and RSD2,
between slope,; and two sector slopes,
Slope(i) and Slope(i+1):

RSD1 = slope, — Slope(i)
RSD2 = slopepl — Slope(i+1)

These values are references for the sector
and the point P, is called the sector reference
point.

Choose the next boundary point. Let it in
general be the point P,. Check step 4) for
this point. If the conditions in step 4) does
not apply to this point continue, otherwise
do what step 4) says.

Calculate the differences SD1 and SD2 for
this point:

slope Py =

X - X,

SD1 = slope, — Slope(i)
SD2 = slopepk — Slope(i+1)

Compare SD1 with RSD1. and SD2 with
RSD2. If SD1 and RSD1 have opposite
signs, Py is the approximate radius vector i
boundary intersection point. If SD2 and
RSD2 have opposite signs, as in Fig. 7, Py is
the approximate radius vector /+1 boundary
intersection point. If there is no sign change
repeat this step.

If the intersected radius vector is not the
same as the radius vector of the previous
intersection, calculate the radius vector
length and store it as a function of the order
in which it was detected 7(¢), otherwise,
discard the point with out further
processing.

Choose the next boundary point that is
actually the first point of the new sector. Go
back to step 4) and repeat the procedure
interpreting this point as the starting point
Py in all steps. Of course if there is no
boundary point left, the algorithm
terminates.

Some points about this algorithm must be noted here.

As the algorithm implies, we first check
every boundary points to see whether they
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Fig. 7. Radius vector-boundary intersection detection example

are on vertical or horizontal radius vectors
or not. The vertical vectors are checked
because their slopes are infinity and can not
enter into our calculation. The purpose of
checking horizontal vectors is that the
boundary points intersected by these

vectors can not be detected through steps 5)

— 7). This is a consequence of our one

quadrant scheme. In other words, because

we consider only the magnitude of slopes
and not also their sign, the algorithm does
not sense any changes when it passes
across the horizontal radius vectors in
which only the sign of vector slopes
changes.

Since the boundary is supposed to be
connected, when an intersection is detected,
one might say we do not need to locate the
new sector again by searching among the
array of slopes (except for the starting
boundary point). It means that because the
sectors are traced consecutively, we do not
need to execute step 4) each time we come
back from step 9) and the new sector is
known according to the previous sector and
the detected radius vector-boundary
intersection. This is true if we forget we are
dealing with a digital image! Because of the
digitalization effect, or in other words
because we have a finite number of
boundary points, the boundary is not really a
connected path. This unconnected nature of
the boundary emerges where the boundary
goes too close to the «centroid (see
‘Boomerang’ in Fig. 9). In this case, several
radius vectors can lie between two adjacent
boundary points and a jump across sectors
will occur when we pass a long these points.
Thus we do need to execute step 4) to
determine the new sector we entered into,
each time an intersection is detected.

As explained above, one boundary point
near the centroid can mathematically
intersect more than one radius vector. In our
algorithm we automatically save only the
first detected intersection.



d. Because a change in sectors can happen
between the last boundary point and the first
one (interpreting circularly), we add the first
(starting) boundary point to the end of the
sequence of boundary points if this point is
not on a horizontal or vertical radius vector.
In this way we are able to detect the above-
mentioned intersection too.

We obtain our desired boundary representing
time series by implementing the algorithm described
in this section and are able to construct the shape
autoregressive model. This is the subject which is
discussed in next section.

2.3. Mathematical modeling of the boundary
131

In this section we consider the analyses of the
one-dimensional time series {r(1), »(2), . . ., n(T)}
derived from the methods discussed in previous
sections. Since the boundary is closed,

rtk+T)=r(k), V integerk D

we fit a particular type of CAR model to this data
(see [3]):

m

rt=a+29j Tomt1 7+ pw, t=1---T 2)
J=1

where
7, = current radius vector length

Timt,1= the radius vector length detected ¢

radius vectors before the current 7,

(collectively called lag terms). Here
[x] is x interpreted periodically on the
integers 1,2, ..., N

6,,---,60, = unknown lag coefficients to be

estimated from the observed time
series

m =model order

J_ = unknown constant to be estimated

\ B w,= current error, noise, residual

o = unknown constant to be estimated
{wt} = a random sequence of independent

zero-mean samples with unit variance:
E(w;) =0, E(wiw)) =

Since the variance of w, is one, the \/E factor
transforms the unit variance random variable w, to a
random variable with variance £ .

The unknown model parameters (&,8,) in

Eq. (2) are estimated from the observed time series.
The popular estimation of the parameters is the ML

estimation. If we let (a”,0", ﬂy) be the ML

estimation of the parameters (¢, 8, ) , then 8 can

be computed by a gradient algorithm. For reducing
the computations in the estimation procedure, the use
of the following LS estimation is suggested by [3].

T -Irr
©0".6)= {Zu,_lu,ﬂ} {Zu,_m} 3)

t=1 t=1

T T m
~ 1 Ara 1 R ~
ﬁ=72(n —(0".éym)* =;Z Y/
t=1 t=1 =1 '
“4)
where
=z D), and 7 = ()

Also @ can be obtained from the well-known
Yule-Walker equation which is described in section
4, and then & can be written as

1 T . | m
72, 0i=0"5)=7|1-36, (5)
=1 j=1

This Equation shows that o is proportional to the
mean radius vector length, 7 and is therefore a
descriptor of the shape size. For large 7, this LS
estimates tend to ML estimates asymptotically.

The boundary representation and modeling
schemes that we have explained so far, are
insensitive to object translations, and to rotation of
the object and variations in the starting sample over
angles that are integral multiples of 2n/7. It can also
be shown that the CAR model Parameters, € , are not
dependent on the size of the object (refer to [3] for

a

the proof), where as the parameters « and \/_ are
directly proportional to size. However the function
a/ \/ﬁ , which can be interpreted as a signal-to-noise
ratio, is size independent. These invariant properties
of the parameters (0, 0(/ ﬁ )make them attractive

candidates as shape features for recognition purposes.
This idea is realized in section 3.1.

3.Classification in noise-free environment

Having constructed the mathematical shape
models, we are now able to develop a shape classifier
based on the features that are extracted from the
shape boundaries. The feature extraction procedure is
described in section 3.1. Two fast classification
algorithms which are suitable for near real-time
applications are introduced and examined using a
number of realistic machine parts and aircraft
silhouettes, and a set of four letters of alphabet. All
these three pattern sets are shown in Figs. 8, 9, and
10. At last the ability of the algorithms in recognizing
deformed shapes is assessed in section 3.4.
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Fig. 10. Letters of alphabet (with font “Anial’)

3.1. Feature extraction

In order to extract features from a given shape, we
first represent its boundary by a one-dimensional

time series. This procedure was discussed thoroughly

in sections 2.1 and 2.2 and is summarized graphically
in Fig. 11 for a scaled and 45° rotated version of
aircraft templates shown in Fig. 8. Then a CAR
model is fitted to the data and the parameters

(6. a/ \/E )are estimated. Then these parameters,



because of their special invariant properties are
chosen as features defining the feature vector:

6, ]
f"z

_ 07)]
o/ VB |

We assume that rotations of the object over angles
that are not integral multiples of 2a/N or variations in
the starting sample point will produce similar time
series if the number of radius vectors is large enough
to accurately represent the boundary. Table 1 shows
data for different sizes and rotations of ‘Starship’

chosen from aircraft templates in Fig. 8. The CAR
model (of order 2) parameters were estimated from
the lengths of NV = 64 angularly equispaced radius
vectors projected between the boundary and its
centroid. In first three rows of table 1, the shape is
scaled by different factors without any rotation. In
rows 4 — 8, size is kept fix and the shape is rotated
first through three different degrees (45°, 90°, and
315°) that are integral multiples of 2n/N and then
through two other degrees (240° and 120°) that are
not so. This data shows that the CAR model
parameters preserve intraclass shape similarities
among samples differing in size and spatial
orientation, and are therefore suitable shape
representatives  for a  classification  task.
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Fig. 11. Example of boundary extraction, boundary sampling
and time series generation for scaled and 45 degrees rotated
aircraft templates.
Table 1
Data for “Starship” using N = 64 equiangular radius vectors and a CAR model of order m=2.
Rotation Centroid
e (7
i Scale factor| T ; P a B a/ ﬁ . v
0 0.7 72 1.0901 -0.2942 9.0121 130.84 0.7879 84 106
0 1.3 72 1.0633 -0.2592 16.2236 459.72 0.7567 156 196
0 1 74 1.1320 -0.3250 12.3873 244.57 0.7921 120 152
45 1 73 1.1399 -0.3248 11.9282 24991 0.7545 153 193
90 1 74 1.0684 -0.2539 11.9474 258.91 0.7425 90 120
315 1 72 1.0847 -0.2879 12.9396 274.20 0.7813 193 193
240 1 76 1.1685 -0.3473 11.6590 219.2231 0.7874 193 152
120 1 76 1.1580 -0.3551 12.8931 248.00 0.8187 143 151




3.2. Classification schemes

In order to investigate shape classification by
the use of CAR model parameters, we implement
two simple and sufficiently fast classifiers: the
Bayes optimal classifier with Gaussian parametric
estimation of PDFs, and a linear classifier based on
L(L-1)/2 hyper planes(Z= number of classes). These
classifiers are chosen because of their high
recognition speed and their plausible accuracy. We
do not intend to explain these classification
algorithms here, as they can be found in most
pattern recognition books like [4].

3.3. Tests and results

In this section all the algorithms that we have
introduced so far are implemented with MATLAB
programs. The sources of all these programs are
given in the Appendix. For each shape we collect
training and test data sets composed of samples of
different sizes of the shape in various rotational
positions. The size of each object image varies from
0.7 to 1.3 times the size of the original object. The
shapes are then rotated over the range from 0 to 360
degrees. 76 angles for aircrafts and 64 angles for
machine parts and letters are used to extract the
data.

Table 2 shows the classification results for
each pattern set. Classification performance is
measured by the number of correctly classified
pattern set samples divided by the total number of

samples tested. In order to obtain these results, we
modeled all of the shapes in each pattern set with a
full CAR model of specific order and measured the
performance of the two recognition algorithms
introduced in section 3.2. We repeated the
procedure for model orders 2 to 10 in order to
obtain a measure of recognition performance versus
model order. The relationship between model order
and shape complexity suggests a possible
connection between recognition performance and
model order. There is also a relationship between
model order and training set size. The Bayes
optimal method can not be calculated (dashed lines
in table 2) when the number of training set samples
for a given class is less than or equal to m+l
because the sample covariance matrix of the class is
singular. Therefore, the training set of each class
must contain at least m+2 samples and m+1 of them
must be linearly independent.

The results in table 2 indicate that the CAR
model parameters are useful shape descriptors for
recognition purposes, and the approximate
boundary representation algorithm retains sufficient
shape information for the estimation of these CAR
model parameters. As we see in table 2, lots of our
tests show perfect (100%) classification results. The
results are dependent on the particular model order
used and on the classification scheme employed.
We can also see that the classification accuracy
improves as the number of training samples
increases. It is quite surprising that we obtain

Table 2
Average correct classification percentages for pattern sets shown in Figs. 8, 9, and 10.
Model ' Method Aircrafts Machine Parts Letters (Arial)
order Ne=10 | N;=20 | N=30 | N=10 [ N,=20 | N=30 | N=10 | N,=20 [N,=30

2 Bayes 100 100 100 98.86 99.43 99.43 99.5 98.5 99.5
Linear 99.25 100 100 98.29 96.86 99.43 100 100 100

3 Bayes 100 100 100 95.71 99.43 99.71 99 99.5 99.5
Linear 98.25 100 100 97.71 99.71 99.71 99 100 100

4 Bayes 100 100 100 92.29 99.71 100 100 100 99.5
Linear 99.75 99.5 100 97.71 99.71 100 97.5 100 99

5 Bayes NS00~ | NS00~ | \100”7 \90~ N00~ [ 1067 W G.Q&
Linear 99~ | 99.75 100 96> | 9837 | 9971 98 99> 10§

6 Bayes 100 100 100 84 100 100 98.5 100 100
Linear 98 99.25 99.75 89.43 98.29 99.43 95.5 99.5 100

- Bayes 100 100 100 74.57 98 99.71 94.5 99.5 100
Linear 98.75 100 99.75 89.71 97.43 99.14 95 98.5 100

8 Bayes 78.5 100 100 52.29 98.29 100 94 100 100
Linear 97.25 99.75 99.5 86.86 98 99.14 95 98.5 99.5

9 Bayes --- 100 100 -— 96.57 99.71 — 100 100
Linear 92 99.5 99.75 75.71 94.57 99.43 88.5 98.5 99.5

10 Bayes --- 100 100 -— 96.29 99.71 — 99.5 99.5
Linear 91.5 99.25 99.5 79.43 96.29 96.29 85.5 97.5 98.5

o

The average probability of error in Bayes classifier is zero in all tests.
No sample is assigned to unknown class in any tests with linear classifier.



perfect classification results for aircrafts with only
10 training samples for model orders 2 — 7. At
model order 5 and for N, = 20, the Bayes optimal
classifier shows 100 percent correct classification
results for all pattern sets.

Generally we can say that in our problem, the
Bayes classifier performance is better than the
linear classifier performance. However, for small
sizes of training set (e.g. N, = 10), the linear
classifier is less sensitive to changes in model order
than the Bayes classifier and also it does not have
the particular singularity problem that we encounter
in Bayes classifier when N, is small. Thus, the
linear classifier can be used when training set size
prohibits the use of the Bayes classifier.

Another point concluded from the results is
that the shapes can be represented by CAR models
of order lower than the optimum for these shapes,
and can still be successfully classified by the Bayes
optimal classifier. Thus, the model order of each
individual shape sample does not have to be
determined for accurate recognition.

3.4. Examining the ability of classification
algorithms in recognizing deformed shapes

In a classification problem, there might be
some special situations in which the shape of the
objects changes in different ways. One example of
such special problems, which is actually one of the

10

most difficult problems in recognition, is the
classification of partial views of shapes based only
on knowledge of the whole shapes. Our described
algorithms were tested in this situation in [2] by
artificially covering portions of the shapes and
recognition accuracies of 72.5% to 85% for model
orders 1— 9 were obtained (the Rotated Coordinate
System classifier was used in [2] instead of our
Bayes classifier). These results show that the CAR
model parameters can be useful features for
partially occluded shapes, but further study is
needed to determine the practicality of the
application.

Here we test another possible kind of shape
deformation through the set of letters of alphabet.
This is the situation in which the classifier is trained
using the letters written with a specific font while
the test letters are in some other fonts. As shown in
Fig.12, in our experiment we train the classifier
using the font ‘Arial’ and then test it using letters
with the three fonts: ‘Times New Roman’, ‘Book
Antiqua’, and ‘Tahoma’. Table 3 summarizes the
results obtained by the use of the Bayes optimal
classifier. As we see, these results are actually
much worse than what we expected! The maximum
correct classification for ‘Book Antiqua’ is 52%,
for ‘Times New Roman’ is 57%, and for ‘Tahoma’
is 66% which are obtained from model orders 5, 5,
and 3 respectively. Also, as the last row of table 3

ARIAL TIMES NEW ROMAN

BOOK ANTIQUA TAHOMA

G G
H H
| | ]
J | J

G | G
H | H
|
I,

Fig 12 Probable deformation in letters set.



indicates, the correct classification rate decreases as
the number of training data is increased. This shows
that the ability of the classifier in recognizing the
deformed shapes reduces as the classifier learns
more about the original shape through more
training samples.

The results for the linear classifier have not
been included in table 3 as they vary significantly
each time we run the program. As we know, In the
linear classifier we consider random initial values

Table 3

11

for the normal vector of each hyper plane. Since
these values vary in each run of the program, the
results may not be the same for all runs. In our
previous tests these changes were small and
negligible but here, in the case of deformed shapes,
we see much variation in the results and correct
classification percentages from 30% up to 80% may
be obtained for a single template! Thus we did not
include these results in table 3.

Average correct classification percentages for deformed pattern sets shown in Fig. 12.

Model Method Book Antiqua Times New Roman Tahoma
order Ne=10 | No=20 | No=30 | N.=10 | N.=20 | N.=30 ] N,=10 | N,=20 | N,= 30
2 Bayes 38 24 25 49 30 29 49 45 46
3 Bayes 29 28 27 33 47 43 66 65 65
4 Bayes 27 27 25 33 29 32 54 52 53
5 Bayes 52 46 38 57 45 26 50 52 53
6 Bayes 45 38 32 57 39 25 47 49 49
7 Bayes 43 38 37 51 26 23 50 49 49
8 Bayes 35 46 39 48 29 26 50 50 48
Maximum 52 46 39 57 47 43 66 65 65

4. Classification in noisy outlier contam-
inated environment [1]

Through the remainder of this project we
consider the problem of classifying objects in
environments generating significant imaging noise.
The latter increasing the likelihood of
contamination by large aberrant observations
(outliers). These are typically generated by failures
in boundary extraction or long tailed imaging noise.
As same as previous sections our focus is on near
real-time  classification  algorithms. Typical
examples are the automatic inspection of industrial
components, where the aim is to identify and
characterize faults, autonomous vehicle navigation,
where unexpected objects enter the domain, and the
analysis of speech spectrograms. For extracting
information from outlier contaminated data we use
techniques which are insensitive to outliers. An
alternative approach based on the direct use of the
spectral function estimated using sub-set auto-
regression is introduced and benchmarked against
the feature based approach used in noise-free
environment. It is shown that we achieve a
significant performance improvement by the use of
sub-set AR models instead of full models.

4.1. The model

Let X=(X,,t=1,..., T) be an estimated time

series of a given object. We construct a noisy

outlier contaminated version ¥ =(Y;,f=1,...,7) of

X using
Y=X+N+koyA4 (6)
where N7 = (Npt=1,..., 77 is a vector of

independent normally distributed random variables
with zero mean and variance o3 . A” is a vector
with 7-int(s7) zero elements at random locations

(int(s7) means the integer part of (s7)). while the
remainder take the value +1 or -1 with equal
probability. In this way we introduce int(s7)
outliers of magnitude +koy or -koy. This generates
outliers with similar relative size for all templates,

as g % is the variance of X.

Following Kashyap and Chellappa [3]. we
assume that Y is generated by a circular sub-set auto
regression CSAR(J,1.9;.07) of the form

L-p=> (N~ + 2, t=1-T (7)
jeJ

where (j;je J) are ‘time’ lags in the model,

0;=;(jeJ )T the corresponding parameters,
4 a location parameter and (Z, t=1,...,7) the

innovations. We assume that the latter are a
sequence of independent, normally distributed

. . . 2
random variables with zero mean and variancecy .



This is the same model we used in section 2.3
where x is equivalent to a and a% is equivalent to S.
In noise-free environment we considered a full
model of order m, (J =( 1,2,...,m)T ). Here, in the

case of sub-set model, we employ a robust lag
selection procedure to find a near optimum lag
structure J for each template. This is presented in
section 4.3. Particular robust parameter estimations
are also introduced in section 4.2 to mitigate the
effect of outliers.

4.2. Robust parameter estimation

Consider a circular sub-set auto regression
with lags J and parameters ¢, =(¢,,,j € ). We
estimate the latter from a single data record
Y=(Y, ,t=1,...,T)using the Yule-Walker equations.
These are I}J¢?J =7, , where kJ =(r(li—-j),i,jeJ)
and 7; = (#(i); i€ J). When non-robust procedures
are required, (7(u),u >0) is the sample covariance
function

T
) =2 Y 8, = 0y~ ) ®)
t=1

In this case the estimated parameters ¢3 ), are exactly

equal to what is obtained by the formulas presented
in section 2.3. Here, to mitigate the effect of
outliers, we use the robust estimate of the auto
covariance function given by

~ A2 é(u) >

= — >0 9
=65 30" ©)
where
e LS Y, i Yooy — 2

I . 10
&(u) T;://H,f[ 5 jvm,f[ 6 (10)

For non-robust procedures, /1 is estimated by the

sample mean value Y , and the sample standard
deviation is used for & . The robust alternatives

for these parameters are

A =median(Y,,t =1,---,T), (11)
6y =1.483median(y, - 2.t =1,---,T). (12)

Wy, r(x) is Huber's function

x xl< f 5
Virs 0= rsign(o) x> £ ()

where f is a parameter chosen appropriately for
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each template.
We take the usual regression estimate

A T —card(j) Ay A Al
7= [—T card()) J{r«» ;@ (J)”(J)J , (14)

where card(j) is the number of lags in the model.
This formula differs from (4) by the factor

T —card(j)
T —2card(j)-1)’
which is nearly equal to 1 when T is large enough.

4.3. Robust lag selection

In this section we show how the lags of a sub-
set auto regression can be determined from N
multiple data records(Y,,k=1,...,N). The #kth

record Y, = (¥, ;,....Y; 5, ) has T} elements. In our

experiment there are N = N; data records associated
with the ith class.

The robust Yule-Walker equations are used to
estimate the parameters of candidate models in each
data record. These estimates averaged over N data

records make the class parameters G5 and ¢,

1 N
&2 :WZ(&;’” (15)
k=1
~ 1&g
o =—2 9. (16)
Nk:l

Let the lags in the model at the vth iteration be
denoted by J,. We calculate the parameter estimates

¢, using the equation (16) and section 4.2. Then

we determine the lags J,.; = J,\j (lags in J, with j
removed) which minimize the loss function

87 (J,. /)= Blogd} (j)+(1-BlogD(J,. /) (17)
where

1< . N 2
DU =12 O b, D4 2o ()] (19)

k=1

The factor f in equation (17) is used to balance the
effect of the two terms in the loss function. The

formula used in [1] for D(J,, j) 1S

N
D(J,, /)= Y A (OR,
k=1
where (R, =F,(wv),@v)eJ,) and (F(u),u>0) an



estimate of the auto covariance function using
Y=Y, see section 4.2. This formula seems to be
incorrect or some printing mistake might have
occurred in the original paper. In this formula

7,(0)= 69 is a single value and f\’kﬂ s, is a matrix,
S0 D(Jv’ j) becomes a matrix while the loss

function involves it being a single value. Thus,
considering the main idea used in the definition of
the loss function, we suggest the alternative formula
(18). The first term in the loss function indicates
that it is desirable to omit the lag ;j which its

corresponding coefficient 5J (j) has the smallest

absolute value among all lags coefficients and has
therefore the least effect in constructing the model.
In the second term through the use of the formula
suggested for D(Jv’ j) we panelize lags associated

with parameter estimates with large variance. If we
ignore the factor 7. (0) which is equal for all

candidate lag structures, D(JV, j) 1s equal to the
variance of (/3 ;. (J) . In order to understand the role

of the term D(Jv’ j), consider the lags j and
j” whose corresponding parameters @2 (j) and
@% (j”) are smaller than all the other parameters,

and ¢ JZ (<o sz (j7) . Now suppose we compute D
for these lags and see that D(Jv’ j') is much larger

than D(J_, /) . This shows that although 0 7 () <
5 sz (j), the certainty of the estimation for

51., (j') is lower than for 51., (j7) as it has larger

variance. So, it is more plausible to omit j” instead
of ;. The second term in the loss function through

the use of the tuning factor /5 gives us the flexibility
to change the decision in such cases.

The procedure described above is repeated for
v=12,...,m—1 where m is the number of lags in
the initial model (a full auto regression). Finally,
the lags of the sub-set auto regression generating
the data (¥),k=12,...,N) is identified by

J=argmin RFPE(J), J=Jy,Jy,J,, (19
J

where RFPE(J) is a robust analogue of the final
prediction error criterion for multiple data records.
Here

|J|+1
Tk

RFPE(J) =

G () 1+ (20)

k=1
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where | J | is the number of lags in J, 63 (J) is the

estimate of the innovation variance given by (15),
and y is chosen equal to 1.

4.4. Spectral function estimation and the
classification scheme

In this section we describe the recognition
scheme based on the spectral functions estimated
from CSAR model parameters. We assume that Y is
standardized by an estimate of the scale of X, &

which as stated before, is the sample standard
deviation in non-robust procedures or is estimated
by equation (12) for robust algorithms.

First we estimate the spectral functions
associated with the C object classes using the
training data. The ith class contains »; independent
records. We obtain the CSAR model parameters for
the kth record in the ith class for all values of .
Then we calculate the smooth interpolant of the
spectral function associated with the ith class by

(1) =67 g(.¢)). 0<A<im (21)
where
&(4.0,)= 1 - 22)

27:‘1 =S 6 (l)e_w‘

with estimates of 0'§ and ¢; given by (15) and (16)

respectively. It is easy to see that E(/l) is invariant

to shifts, rotation, and scale changes when Y is
standardized.

Now, we use these spectral functions to
classify objects. A distance based classifier is
suggested for this case in [1] as it appears to give
better performance than feature based techniques.
The distance is defined here as

d” =d"(f,H+d"(f,1), (23)
where
: < f(2, )]
d"(f,g) = ( . (24)
Zz OW /1) ; (ﬂ’t)

A =2m|T.

f(/l) is an estimate of the spectral function

associated with Y that is the observation being
classified. This is derived from CSAR model fitted
to Y and spectral function estimated for it
considering N =1 in (15) and (16) which leads to

~2 _ 22 - _ -
G; =0z and ¢, =¢,.



In our experiment we take h(x) = (x-1)* and
w(4) = 1 for values of / that construct the most
frequency content of the spectral functions and zero
elsewhere. We will show that most differences
between spectral functions are contained in the
interval 0<A <277/100, where / = 20. By taking

h(x) = x and w(4) = 1, we obtain the familiar
quadratic descriminant.
Finally, we allocate Y to class v if

ay>dY. i#v. (25)
4.5. Tests and results

In this section, we examine the performance of
the suggested algorithms using the same pattern
sets of section 3. We first generate a primary
version of training and test data through randomly
scaling (0.7~1.3) and rotating (0°~360°) each
template about the center of gravity of its vertices
and sampling its boundary using 76 angles. We
consider 100 records for each of test and training
data sets. Contamination is then added to this data
using Eq. (6). We take 0'%, =42, 5=0.02, and k=
0, 12. This ensures that there are (generally) one or
two outliers (s = 0.02) in each profile when k # 0.
To illustrate the nature of the contamination used in
our experiment we plot the time series associated
with the ‘Harrier’ before noise addition and after
that for k = 0 and k = 12 in Fig. 13. As stated in this
figure, parameters g and Gy estimated by Eqgs.

(11) and (12) are almost insensitive to outliers. It
must be noted here that for data with large variance
ox. outliers of magnitude -koy can result in negative
values for the time series. As this is not realistic
(radius vector lengths can not have negative
values), we cut off these negative peaks as shown in
Fig. 13.

To be able to use the robust parameter
estimation algorithm described in section 4.2, we
must first choose an appropriate value for Huber
parameter £ In [1], the same value = 2 has been
taken for all aircraft and machine part templates.
Here we try to find better values for f associated
with each template. Consider a given data record Y.
In the absence of outliers (s = 0 or £ = 0), the
parameter estimates obtained from robust
algorithms are desired to be the same as those
obtained from non-robust algorithms. It can be seen
in Eqs. (9) and (10) that if we choose f greater than
or equal to (¥,—f)/Gy for all values of ¢

(t=12,..., T). then 7 will become equal to the

sample covariance function and the two algorithms
will be equivalent. However, large values of f have
little mitigation effect in the presence of outliers.
Thus, for this given record ¥, we choose f exactly
equal to the maximum value of (Y, — /1)/6 y over

all values of 7.
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Fig. 13. Time series for Harrier before noise addition and after
that for (s = 0) and (s = 0.02, k= 12).

In our experiment, since we have N; = 100 data
records for each template in the training set, we
choose the value of f for each template 7 as

0_7‘7(1)
f(l)=m ma %J=LZ-~,T,~A’=LZ-~,M
Oy,
k

(26)

These values, obtained for all templates of each
pattern set, are given in table 4.

Table 4.

Huber parameters.
Aircrafts| f Machine Parts | f ||Letters(Arial)| f
Buccaneer|2.64| |Bar 10 G 435
F16 2.58| |Bolt 1.57 H 238
Goose 1.54] |Boomerang 2.15 I 8.23
Hammer [2.35]|Cylinder 1 J 34
Hawkeye [3.72] [Nut 4
Hercules | 2.4 | |Spanner 1.62
Mirage 3.87| |Star 1.87
Starship [4.92




Another step is still left to make the parameter
estimation algorithms completely ready to use. This
step is the determination of lag structures associated
with templates of each class. This lag selection is
carried out independently for noisy data (k= 0) and
contaminated data (k= 12, s =0.02) using the robust
algorithm described in section 4.3 and taking = 30
for aircraft silhouettes, and = 20 for machine parts

Table 5
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and letters. In both cases we use the loss function

8% with S = 0.2, although different values of
have little effect on the performance of our
algorithm, as the number of samples in the training
set is large. The lags obtained in our experiment are
given in tables 5 and 6.

Lags identified by the robust procedure described in section 4.3 for silhouettes of Figs. 8, 9, and 10 using outlier free data

Lags123456789101112131415161718192021222324252627282930
Template
BUCCANEER (e |e . o|o|o|o|o o|o|e
F16 olefo|o]|e]e ole|e ole
g GOOSE o|lo|o|o]|e o|o|eo|e
© HARRIER e|le|eo]|e ° e|o|eo|e
g HAWKEYE ofe o|loe|eo|e o|e
< |HERCULES ofe e|lo|eo|e ° o|o|o|e]|e
MIRAGE ofe e|lo|e
STARSHIP ole ° ° e|eo|e
BAR ° ° °
g BOLT ole ° o|e
0.  BOOMERANG|e|e|e
2 [CYLINDER o o o| o
% NUT o|o|e ele|eo
g SPANNER oe|e ° ole
STAR [ ° o|e
G olefo]|e
g H ole .
%' I o|lo|o]|e
- 1] olo|o]|e .
Table 6

Lags identified by the robust procedure described in section 4.3 for silhouettes of Figs. 8, 9.and 10 using outlier contaminated data with k=12

Lags
Template
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4.5.1. Evaluating the robust parameter
estimation algorithms through spectral functions

To evaluate the performance of the robust
parameter estimation algorithm, we estimate and
sketch the corresponding spectral functions for
aircraft templates, see Figs. 14 and 15. The spectral
function determined by robust techniques is

denoted by FR , see Eq. (21), with the corresponding

non-robust estimate by fYW. It is readily apparent

that the aircraft silhouettes give a prominent low
frequency peak in the spectral function. By
comparing the solid and dashed lines in Fig. 14, we

see that the non-robust estimates FYW are greatly

distorted by the presence of outliers, with the
spectral function becoming more like white noise.
When robust procedures are used a different pattern

emerges. Here FR is relatively unaffected by the

presence of outliers, with similar shapes in outlier-
free and contaminated data. By comparing Figs. 4
and 5 we see that robust and non-robust estimates
are similar in outlier free data.

4.5.2. A classification experiment

In this section, we first generate and store the
spectral function parameters &, and (@, (), j€ J)

associated with each class using the training time
series. For test data, we estimate and store

parameters &, and (¢3J( 7, jeJ) for all test

records of each class. These training and test data
are the final data used for the classification task,
and are generated independently for k = 0 and & =
12 with s = 0.02.

In order to benchmark this new approach
(based on spectral functions) against Dubois and
Glanz (DG) approach in [2] (feature based
approach), we generate DG training and test data

too, using the feature vector (¢,@,.,....4,1/6,)"

where we take M = 5 which is the full model order.
To clarify the effect of robust algorithms, all
the abovementioned training and test data are
generated using both robust and non-robust
procedures. We also examine the effect of
excluding frequencies in the spectral function based
classifier by taking w(2) = 1 for 0< A< 24/100,

with /=20 and /= 50. In [1], /= 100 has been taken
instead of / = 50. Because the portion of spectral
functions located from A=2750/100 to A=27100/100
is the mirror image of the portion A = 0 to A =
2750/100, we take / = 50 instead of /= 100 to reduce
the computations.

The percentages of correctly classified
templates using 100 unclassified test templates for
various levels of contamination (k=0 and k=12) are
summarized in tables 7 — 9 for both robust and non-
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robust cases. Confusion matrices are also given in
tables 10 — 27.

It must be noted that, on the contrary with [1],
we do not use the lag selection procedure in the test
set, as it reduces the speed of recognition task
significantly so that it can not be comparable with
DG approach. The same lag structures obtained for
training records are used for test records too.

For outlier contaminated data (s = 0.02, k= 12)
we see that non-robust procedures (based on sample
covariance function) suffer large reductions in
performance. This is in marked contrast to the
suggested robust approach which is almost
insensitive to outliers. For aircrafts, it is readily
apparent that robust spectral method gives
significantly better performance than DG approach
with robust parameter estimation. For machine
parts, again the spectral approach has better
performance although the difference between two
methods is not very big. For letters, on the contrary
with aircrafts and machine parts, the performance
of DG approach is better. This shows that for a
given problem, we can not certainly say which of
the two methods will give better results and it is
better to test both methods, however , for problems
in which the shapes are rather complex (such as
aircrafts) the use of spectral classifier is preferable.

For outlier free data (k = 0) the relative
performance of the techniques used in this study
varies slightly according to the templates used, see
tables 7, 8, and 9. In broad terms, non-robust
techniques have a little better performance, with
DG approach giving the best (or equal best )
performance.

The use of weights with /= 20, has little overall
effect on classification performance in outlier free
data, although significantly improved performance
in outlier contaminated data, see ‘Nut’ in table 8.

To gain further insight into the relative
performance of the techniques under consideration
we investigate selected confusion matrices. From
tables 10 — 27, in the case of outlier contaminated
data, we see that the confusion matrices associated
with the non-robust spectral approach are greatly
affected by the presence of outliers, although
retaining some structure in common with their
robust analogue. For example ‘Spanner’ in table 19
is most likely alternative to ‘Bar’.

The confusion matrices of the spectral
approach have similar structures in outlier free data
for robust and non-robust procedures. Also
increasing / to 50 has little effect on the
corresponding confusion matrices.

In the case of DG algorithm, a similar pattern
emerges, with the presence of outliers having a
large effect on the structure of the confusion
matrices of non-robust procedures. By comparing
tables 14 and 15 we see that the structure of the
confusion matrices associated with the spectral
approach differs substantially from DG approach.
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Fig. 14. Estimates of the spectral function FYW for the templates in Fig. 8. The solid line gives the non-robust estimate in outlier free data,

with the dashed line its value in outlier contaminated data (s = 0.02, k£ = 12). Here L refers to the frequency 2zL/100.
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Fig. 15. Estimates of the spectral function FR for the templates in Fig. 8. The solid line gives the robust estimate in outlier free data, with the



Table 7

The percentage of correctly classified templates in Fig. 8 corrupted by noise with int(0.027) outliers of magnitude k

19

Robust Non-robust
Templates k =50 =20 DG =50 =20 DG
Buccaneer 0 100 100 99 100 100 99
12 100 100 86 70 95 51
F16 0 100 100 100 100 100 100
12 100 100 94 72 98 66
Goose 0 100 100 100 100 100 100
12 99 100 100 42 85 72
Harrier 0 100 100 99 109 100 100
12 96 100 84 85 93 55
Hawkeye 0 95 93 100 1 _OE) 100 97
12 94 100 82 55 84 60
Hercules 0 98 99 100 100 100 99
12 86 100 95 40 75 53
Mirage 0 100 100 100 100 100 100
12 98 99 86 68 98 61
Starship 0 100 100 100 1_00 100 190
12 98 100 98 50 84 58
Averine 0 99.125 99 99.75 100 100 99.375
12 96.375 99.875 90.625 60.25 89 59.5
Table 8
The percentage of correctly classified templates in Fig. 9 corrupted by noise with 1nt(0.027) outliers of magnitude k
Robust Non-robust
Templates k =50 =20 DG =50 =20 DG
Bar 0 100 100 100 100 100 100
12 97 99 94 80 82 96
Bolt 0 90 96 100 96 95 99
12 68 92 93 54 53 50
Boomerang 0 93 100 100 96 100 100
12 77 98 90 41 46 79
v lmET 0 100 100 100 100 100 100
* 12 100 100 100 100 100 100
Nut 0 96 98 100 100 100 100
12 65 94 100 30 72 57
Spanner 0 100 100 99 99 100 99
12 88 100 99 0 53 82
Star 0 100 100 100 100 100 100
12 100 100 100 92 93 100
Average 0 97 99.143 99.86 98.71 99.29 99.71
12 85 97.57 96.57 56.71 71.29 80.57
Table 9
The percentage of correctly classified templates in Fig. 10 corrupted by noise with int(0.027) outliers of magnitude k
Robust Non-robust
Templates k =50 =20 DG =50 =20 DG
G 0 78 97 100 79 98 100
12 85 95 100 86 96 92
H 0 86 97 99 87 96 97
12 85 93 94 55 69 75
I 0 99 100 100 100 100 100
12 76 93 97 57 59 90
J 0 88 99 100 89 99 100
12 69 89 98 50 28 54
Average 0 87.75 98.25 99.75 88.75 98.25 99.25
12 78.75 92.5 97.25 62 63 7775




Table 10
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The confusion matrix for aircraft templates in the absence of outliers (A=0), using robust spectral approach (/=50) with its non-robust
analogue in brackets

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship
Buccaneer | 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
F16 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Goose 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Harrier 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0)
Hawkeye 0 (0) 0 (0) 0 (0) 0 (0) 95 (100) 5(0) 0 (0) 0 (0)
Hercules 0 (0) 0 (0) 0 (0) 0 (0) 2 (0) 98 (100) 0 (0) 0 (0)
Mirage 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100) 0 (0)
Starship 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)

Table 11

The confusion matrix for aircraft templates in the absence of outliers (A=0), using robust spectral approach (/=20) with its non-robust
analogue in brackets

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship
Buccaneer | 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
F16 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Goose 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Harrier 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0)
Hawkeye 0 (0) 0 (0) 0 (0) 0 (0) 93 (100) 7 (0) 0 (0) 0 (0)
Hercules 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 99 (100) 0 (0) 0 (0)
Mirage 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100) 0 (0)
Starship 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)
Table 12

The confusion matrix for aircraft templates in the absence of outliers (A=0), using the robust Dubois and Glanz approach with its non-robust
analogue in brackets

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship
Buccaneer | 99 (99) 0 (0) 0 (0) 0 (0) 1(1) 0 (0) 0 (0) 0 (0)
F16 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Goose 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Harrier 0 (0) 0 (0) 0 (0) 99 (100) 0 (0) 0 (0) 1 (0) 0 (0)
Hawkeye 0(3) 0 (0) 0 (0) 0 (0) 100 (97) 0 (0) 0 (0) 0 (0)
Hercules 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (99) 0 (0) 0 (1)
Mirage 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100) 0 (0)
Starship 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)
Table 13

The confusion matrix for aircraft templates using robust spectral approach (/=50) with its non-robust analogue in brackets. In both cases the

templates are corrupted by noise with int(0.027) outliers of magnitude k =12

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship
Buccaneer | 100 (70) 0 (0) 0 (0) 0 (20) 0(2) 0(8) 0 (0) 0 (0)
F16 0 (0) 100 (72) 0 (1) 0(22) 0(2) 0(3) 0 (0) 0 (0)
Goose 0 (0) 0 (0) 99 (42) 1(52) 0 (0) 0 (6) 0 (0) 0 (0)
Harrier 0 (0) 0 (0) 0(8) 96 (85) 0(2) 4(5) 0 (0) 0 (0)
Hawkeye 0 (0) 0 (0) 0 (0) 0 (40) 94 (55) 1(1) 54 0 (0)
Hercules 4 (D) 0 (0) 0 (0) 10 (59) 0 (0) 86 (40) 0 (0) 0 (0)
Mirage 0 (0) 0 (0) 0 (6) 0 (23) 2(3) 0 (0) 98 (68) 0 (0)
Starship 0 (0) 0 (0) 0 (0) 0 (46) 0 (0) 0(4) 2 98 (50)




Table 14
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The confusion matrix for aircraft templates using robust spectral approach (/=20) with its non-robust analogue in brackets. In both cases the

templates are corrupted by noise with int(0.027) outliers of magnitude k =12

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship
Buccaneer | 100 (95) 0 (0) 0 (0) 0(4) 0 (0) 0 (0) 0(1) 0 (0)
F16 0 (0) 100 (98) 0 (0) 0(2) 0 (0) 0 (0) 0 (0) 0 (0)
Goose 0 (0) 0 (0) 100 (85) 0(12) 0(3) 0 (0) 0 (0) 0 (0)
Harrier 0 (0) 0 (0) 0 (6) 100 (93) 0 (D) 0 (0) 0 (0) 0 (0)
Hawkeye 0 (0) 0 (0) 0 (0) 0(8) 100 (84) 0 (0) 0(8) 0 (0)
Hercules 0 (0) 0 (0) 0 (25) 0 (0) 0 (0) 100 (75) 0 (0) 0 (0)
Mirage 0 (0) 0 (0) 0 (0) 0(2) 1 (0) 0 (0) 99 (98) 0 (0)
Starship 0 (0) 0 (0) 0 (1) 0(13) 0 (D) 0 (0) 0 (1) 100 (84)
Table 15

The confusion matrix for aircraft templates using the robust Dubois and Glanz approach with its non-robust analogue in brackets. In both
cases the templates are corrupted by noise with 1nt(0.027) outliers of magnitude k=12

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship

Buccaneer | 86 (51) 1(4) 0(4) 1(18) 4(14) 0 (0) 8(7) 0(2)
F16 5(8) 94 (66) 0(4) 0(8) 0 (0) 0 (0) 1(14) 0 (0)
Goose 0(1) 0 (1) 100 (72) 0(12) 0(3) 0(7) 0 (1) 0(3)
Harrier 3(14) 0(2) 0(8) 84 (55) 8 (5) 0(4) 5(5) 0(7)
Hawkeye 8(13) 0(7) 0(3) 7 (10) 82 (60) 0 (1) 3(0) 0 (6)
Hercules 1(0) 0(1) 2(13) 0(4) 0 (8) 95 (53) 0 (0) 2(21)
Mirage 4(4) 2 (13) 0(5) 6 (15) 2(2) 0 (0) 86 (61) 0 (0)
Starship 0 (0) 0 (0) 0(8) 1(7) 0(10) 0(17) 1 (0) 98 (58)
Table 16

The confusion matrix for machine part templates in the absence of outliers (A=0), using robust spectral approach (/=50) with its non-robust
analogue in brackets

Bar Bolt Boomerang | Cylinder Nut Spanner Star
Bar 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Bolt 0 (0) 90 (96) 2 (0) 0 (0) 3 (0) 5(4) 0 (0)
Boomerang 0 (0) 0 (0) 93 (96) 0 (0) 2(1) 5(3) 0 (0)
Cylinder 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)
Nut 0 (0) 4 (0) 0 (0) 0 (0) 96 (100) 0 (0) 0 (0)
Spanner 0 (0) 0 (1) 0 (0) 0 (0) 0 (0) 100 (99) 0 (0)
Star 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)
Table 17

The confusion matrix for machine part templates in the absence of outliers (A=0), using robust spectral approach (/=20) with its non-robust
analogue in brackets

Bar Bolt Boomerang | Cylinder Nut Spanner Star
Bar 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Bolt 0 (0) 96 (95) 0 (0) 0 (0) 0 (0) 4 (5) 0 (0)
Boomerang 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0)
Cylinder 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)
Nut 0 (0) 2 (0) 0 (0) 0 (0) 98 (100) 0 (0) 0 (0)
Spanner 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100) 0 (0)
Star 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)




Table 18
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The confusion matrix for machine part templates in the absence of outliers (A=0), using the robust Dubois and Glanz approach with its non-
robust analogue in brackets

Bar Bolt Boomerang | Cylinder Nut Spanner Star
Bar 100 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Bolt 0 (0) 100 (99) 0 (0) 0 (0) 0 (0) 0 (1) 0 (0)
Boomerang 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0) 0 (0)
Cylinder 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)
Nut 0 (0) 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0)
Spanner 0 (0) 1(1) 0 (0) 0 (0) 0 (0) 99 (99) 0 (0)
Star 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)
Table 19

The confusion matrix for machine part templates using robust spectral approach (/=50) with its non-robust analogue in brackets. In both

cases the templates are corrupted by noise with int(0.027) outliers of magnitude k=12

Bar Bolt Boomerang | Cylinder Nut Spanner Star
Bar 97 (80) 0 (0) 0 (6) 3(12) 0(2) 0 (0) 0 (0)
Bolt 6 (46) 68 (54) 0 (0) 0 (0) 19 (0) 7 (0) 0 (0)
Boomerang | 3 (52) 4(7) 77 (41) 0 (0) 16 (0) 0 (0) 0 (0)
Cylinder 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)
Nut 14 (41) 13(4) 8 (25) 0 (0) 65 (30) 0 (0) 0 (0)
Spanner 2 (54) 10 (35) 0(9) 0(1) 0(1) 88 (0) 0 (0)
Star 0 (5) 0 (0) 0 (0) 0(3) 0 (0) 0 (0) 100 (92)
Table 20

The confusion matrix for machine part templates using robust spectral approach (/=20) with its non-robust analogue in brackets. In both

cases the templates are corrupted by noise with int(0.027) outliers of magnitude k=12

Bar Bolt Boomerang | Cylinder Nut Spanner Star
Bar 99 (82) 0 (0) 0 (10) 1(8) 0 (0) 0 (0) 0 (0)
Bolt 0(31) 92 (53) 2 (0) 0 (0) 0 (1) 6 (15) 0 (0)
Boomerang 0(16) 2 (0) 98 (46) 0 (0) 0 (38) 0 (0) 0 (0)
Cylinder 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)
Nut 4 (18) 0 (0) 2 (10) 0 (0) 94 (72) 0 (0) 0 (0)
Spanner 0(24) 0(13) 0 (0) 0 (0) 0 (10) 100 (53) 0 (0)
Star 0(7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (93)
Table 21

The confusion matrix for machine part templates using the robust Dubois and Glanz approach with its non-robust analogue 1in brackets. In
both cases the templates are corrupted by noise with int(0.027) outliers of magnitude k =12

Bar Bolt Boomerang | Cylinder Nut Spanner Star
Bar 94 (96) 0 (0) 0 (0) 6 (4) 0 (0) 0 (0) 0 (0)
Bolt 0 (0) 93 (50) 6(3) 0 (0) 1(18) 0(29) 0 (0)
Boomerang 0 (0) 7 (1) 90 (79) 0 (0) 3(4) 0 (16) 0 (0)
Cylinder 0 (0) 0 (0) 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)
Nut 0 (0) 0(30) 0(5) 0 (0) 100 (57) 0(8) 0 (0)
Spanner 0 (0) 1(4) 0(9) 0 (0) 0(5) 99 (82) 0 (0)
Star 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)




Table 22

The confusion matrix for letter templates in the absence of
outliers (k=0), using robust spectral approach (/=50) with its
non-robust analogue in brackets

G H I J
G| 7879 | 20019 0 (0) 2(2)
H| 1009 | 8687 0 (0) 4 (4)
I 09 000) [99700) | 1(0)
J 0 (0) 10 (11) 2 88 (89)

Table 23

The confusion matrix for letter templates in the absence of
outliers (A=0), using robust spectral approach (/=20) with its
non-robust analogue in brackets

G H 1 J
G| 9708 | 20D 0 (0) 1 (1)
H| 23 | 9706 | 0(0) 1(1)
I| 0(0) 0(0) |100(100)[ 0(0)
J| 000 1(1) 0(0) | 99(99)
Table 24

The confusion matrix for letter templates in the absence of
outliers (k=0), using the robust Dubois and Glanz approach with
its non-robust analogue in brackets

G H I J
100 (100)| 0(0) 0 (0) 0 (0)
00 | 99097) | 0(0 1(3)

0(0) 0(0) [100100)] 0(0)
0(0) 0 (0) 0(0) |100(100)

)

In order to examine the effect of lag selection
procedure and use of sub-set auto regression instead
of full auto regression, we generate training and test
data for aircraft templates using full CAR model of
order 5. We consider the outlier contaminated data
(5=0.02, k=12) and take / = 20. The obtained

Table 28
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Table 25

The confusion matrix for letter templates using robust spectral
approach (/=50) with its non-robust analogue in brackets. In
both cases the templates are corrupted by noise with 1nt(0.027)
outliers of magnitude k=12

G H I J
G| 8586 | 14(3) 0(1) 1(10)
H| 622 [ 8555 [ 00 9 (23)
I | 7330 338 | 7657) | 14(5)
J | 4a¢2a [ 25026 | 2000 | 6950
Table 26

The confusion matrix for letter templates using robust spectral
approach (/=20) with its non-robust analogue in brackets. In
both cases the templates are corrupted by noise with 1nt(0.027)
outliers of magnitude k = 12

G H I J
G 95 (96) 3(4) 0 (0) 2 (0)
H 0(2) 93 (69) 0 (5) 7 (24)
1 0 (1) 0(9) 93 (59) 7 (31)
J 0 (0) 9 (53) 2(19) 89 (28)
Table 27

The confusion matrix for letter templates using the robust
Dubois and Glanz approach with its non-robust analogue in
brackets. In both cases the templates are corrupted by noise with
1nt(0.027) outliers of magnitude k = 12

G H I J
G|l1002)] 0D 0(1) 0 (6)

H| 000) [ 94375 | 0(0 6 (15)
1| 000 000) | 97000) | 3(10)
J | 0(12) | 2(33) 0(1) | 98(54)

confusion matrix is given in table 28. By comparing
tables 28 and 14, we see that the performance
reduces significantly when we consider full model
parameter estimates. This test shows that selecting
near optimum lag structure for each template
significantly improves the recognition performance.

The confusion matrix for aircraft templates using robust spectral approach (/=20) based on parameter estimates of full CAR model of order 5.
Templates are corrupted by noise with int(0.027) outliers of magnitude k = 12

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage Starship
Buccaneer 63 2 0 0 8 0 27 0
F16 9 89 0 0 0 0 2 0
Goose 0 0 94 0 0 6 0 0
Harrier 2 0 2 48 9 31 5 3
Hawkeye 9 0 0 4 77 3 7 0
Hercules 0 0 1 18 1 75 1 4
Mirage 22 10 1 8 9 12 38 0
Starship 0 0 0 0 0 15 0 85

o Average correct classification percentage = 71.125%



As we stated before, in our experiment we did
not use the lag selection procedure in the test set.
However, in order to see the effect of this procedure
we do a sample test here. We consider the robust
spectral classifier for aircraft templates in the
presence of outliers and perform the classification
task employing the lag selection procedure in the
test set. It is noted that in the case of test data, lag
selection must be done independently for each

Table 29

24

record, so in section 4.3 we must take N =1 in all
equations. Table 29 presents the result. By
comparing tables 29 and 14, we see that in addition
to significant speed reduction, the performance is
also reduces when we perform lag selection in the
test set. It is shown in [1] that the use of lag
selection in the test set can improve the
classification sensitivity to ‘clutters’ (objects not in
the training set).

The confusion matrix for aircraft templates using robust spectral approach (/=20) and eploying lag selection procedure 1n test set. Templates
are corrupted by noise with int(0.027) outliers of magnitude k = 12

Buccaneer F16 Goose Harrier | Hawkeye | Hercules | Mirage | Starship
Buccaneer 89 0 0 7 6 5 0 0
F16 1 98 0 0 0 0 1 0
Goose 0 0 97 2 0 1 0 0
Harrier 3 0 2 83 0 12 0 0
Hawkeye 1 0 0 1 57 41 0 0
Hercules 0 0 1 17 6 73 3 0
Mirage 0 1 0 1 7 91 0
Starship 0 0 0 1 2 1 0 96
o Average correct classification percentage = 84.625%
Table 31

To evaluate the performance of the spectral
classifier in recognizing deformed shapes, we test it
through the same problem that we described in
section 3.4. We consider the data before corruption
(the data without noise and outliers) and estimates
training and test data. In this case we use the lag
structures obtained for ‘Arial’ in the absence of
outliers and use them for test sets (‘Book Antiqua’,
‘Times New Roman’, and ‘Tahoma’) too. We
employ robust procedures, although in this case (in
the absence of outliers) their results are not very
different from those of non-robust procedures.

Tables 30, 31, and 32 summarize the obtained
results in our experiment. Again we see that the
results are not satisfactory and even our new
classifier based on spectral function estimates can
not be applied to this problem.

Table 30
The confusion matrix for ‘Book Antiqua’ before data corruption
using robust spectral approach (1=20).

G H I J
G 0 14 0 86
H 9 90 0 1
I 0 73 1 26
J 0 9 -4 87

Average correct classification percentage = 44.5%

The confusion matrix for “Times New Roman’ before data
corruption using robust spectral approach (1=20).

G H I J
G 1 72 0 27
H 26 74 0 0
I 0 58 0 42
J 0 1 0 99

Average correct classification percentage = 43.5%

Table 32
The confusion matrix for ‘“Tahoma’ before data corruption using
robust spectral approach (1=20).

G H I J
G 90 10 0 0
H 0 87 0 13
I 9 91 0 0
J 0 99 0 1

Average correct classification percentage = 44.5%

5. Conclusions

In This project we considered the problem of
classifying objects using two dimensional boundary
data in both noise free environment and
environment generating significant imaging noise.



The later increasing the likelihood of contamination
by large aberrant observations (outliers). The shape
classification systems were mainly based on the
CAR model parameter representation of two-
dimensional shape boundaries. In order to obtain
the boundary samples from which the CAR model
parameters were  estimated, a  boundary
approximation scheme was developed to determine
the lengths of N equiangularly spaced radius
vectors projected between the boundary centroid
and the boundary. This scheme accurately
represents convex shapes and complicated concave
shapes. Because of the properties of the boundary
approximation scheme and the CAR model itself,
the parameters of the CAR model are
approximately invariant to shape size, and
translational and rotational position. Two feature
based pattern recognition schemes  were
implemented and studied in noise-free environment.
In the contaminated environment, circular sub-set
auto regressions with robust lag selection and
parameter estimation were used to estimate the
spectral function associated with object boundaries
and classify unknown templates using a ‘distance’
based classifier. The suggested robust approach
substantially outperforms non-robust techniques
(based on the sample covariance function) which
suffer catastrophic reductions in performance in
outlier contaminated data. It was shown that the
robust lag selection procedure is quite advantageous
for a wide range of templates in contaminated
environment.

In our experiment we did not use the lag
selection procedure in the test set because of the
significant speed reduction. However it can be
shown, see [1], that performing lag selection in the
test set, adapts the model structure to the data and is
well suited to classification problems where
sensitivity to clutter is important.

According to our results we can generally say
that the CAR model parameters are useful shape
descriptors for recognition purposes. We obtained
successful classification results for a wide range of
convex and concave shapes in various sizes and
spatial positions by the direct use of these
parameters or using them for estimating spectral
functions. In noise free environment we saw that
the model order of each individual shape sample
does not have to be determined for accurate
recognition and shapes can be successfully
classified by the use of CAR models of order lower
than optimum. However the lag selection procedure
introduced in section 4.3 can be used in problems
that are sensitive to the model order.

We did also some testing of the performance
of our algorithms on deformed shapes. Although
our results were not very satisfactory, the CAR
model parameters can be potentially used for these
problems too and further studies may lead to much
better results. It is noted that there is a tradeoff
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between sensitivity to the main shapes and
insensitivity to deformation and this tradeoff is
implicit in any effort to recognize deformed shapes.
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Appendix

MATLAB Programs

1. Boundary Extraction

BoundaryExtraction.m

function [Boundary]=BoundaryExtraction(Image) % Image: White Object in Black Background
Image=ImClean(lmage);

[r c]=find(Image==1);

[p gJ=min(r);

Boundary(1,:)=[p(1) c(a(1))];

CurrentPoint=Boundary(1,:)+1;

Direction=[0 1;1 1;1 0;1-1,0-1; -1 -1;-1 0;-1 1];

i=1;

DirNo=1;

INO=T,
else
DirNo=DirNo+1;
end
end
Boundary(i+1,:)=Boundary(i,:)+Direction(DirNo,);
else
while Image( (Boundary(i,1)+Direction(DirNo, 1)),(Boundary(i,2)+Direction(DirNo,2)) )==1
Boundary(i+1,:)=Boundary(i,:)+Direction(DirNo,:);
if DirNo==1;
DirNo=8;
else
DirNo=DirNo-1;
end
end
end
i=i+1;
CurrentPoint=Boundary(i,:);
end
Boundary(end,:)=[];

Imclean.m

function [Cleanlmage]=ImClean(Image)
LUT = makelut('sum(x(:)) <=3',3);

Image =~(applylut(Image,LUT));




2. Boundary Sampling

TimeSeries.m
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function [r_t]=TimeSeries(Boundary,AngleNo)

%function [r_t, Intersections]=TimeSeries(Boundary,AngleNo)
Centroid=round(mean(Boundary));
N=[0:fix(AngleNo/4)-1];

Slopes=tan(2*pi*N/AngleNo);
MaxSlopeNo=size(Slopes,2)+1;
Slopes(MaxSlopeNo)=10000; % a large value for tan(pi/2)
OldSlopeNo=MaxSlopeNo+1;

r_t=[];

counter=0;

%Intersections=[Centroid(1) Centroid(2)];

i=1;

InitializationFlag=0;

RSD1=s-Slopes(SlopeNo1);
if OldSlopeNo~=SlopeNo1
r_t(end+1)=norm(Boundary(i,:)-Centroid);
OldSlopeNo=SlopeNo1;
% Intersections(end+1,:)=Boundary(i,:);
end
else if (SD1*RSD1)<0
m=find(Slopes <= s);
SlopeNoO=m(end);
SlopeNo1=SlopeNo0+1;
RSDO0=s-Slopes(SlopeNo0);
RSD1=s-Slopes(SlopeNo1);
if OldSlopeNo~=SlopeNo0
r_t(end+1)=norm(Boundary(i,:)-Centroid);
OldSlopeNo=SlopeNo0;
% Intersections(end+1,:)=Boundary(i,:);
end
end
end
end
end
end
i=i+1;
end
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Boundary Modeling

3.1. Circular Full Auto Regressive Model of order m

e The formulas presented in section 2.3 are used in this program.
e This program was used in noise-free environment (section 3).
e Instead of this program we can use the next program (CSARModel.m) choosing J = (1, 2, ..., m).

CFARModel.m
function [Theta, Alpha, Beta]=CFARModel(r_t, M) % M = Model Order
N=size(r_t,2);
for i=1:M

Zt_1(i,:)=circshift(r_t,[0 i]);

pha=ThetaAlp a(eﬁd);
Beta=sum( (r_t - ThetaAlpha' *Ut_1)."2 ) /N;

3.2. Circular Sub-set Auto Regressive Model

e The Yule-Walker equation is used in this program with non-robust estimations (based on sample
covariance function).
e  This program was used in section 4 wherever non-robust procedures were desired.

CSARModel.m

function [Phi_hat,Sigma2_hat]=CSARModel(Y, J)
T=size(Y,2);
M=size(J,1);
r_hatO=Autocovariance(Y,0);
R_hat=r_hat0*eye(M);
fori=1:M
r_hat(i,1)=Autocovariance(Y,J(i));
for j=i+1:M
R_hat(i,j)=Autocovariance( Y, abs(J(i)-J(j)) );
end
end
R_hat=R_hat+(triu(R_hat,1))";

Hyu=mean!!!;

N=size(Y,2);
Ac=('Y - Myu )*( circshift(Y,[0 Lag]) - Myu )'/N ;

3.3. Robust Circular Sub-set Auto Regressive Model

e The Yule-Walker equation is used in this program with robust estimations given by Egs. (9), (10), (11),
and (12).
e  This program was used in section 4 wherever robust procedures were desired.




RobustCSARModel.m

function [Phi_hat,Sigma2_hat]=RobustCSARModel(Y, J, f)
T=size(Y,2);

M=size(J,1);

Myu_hat=median(Y);
SigmaX_hat=1.483*median(abs(Y-Myu_hat));
r_hat0=RobustAc(Y, Myu_hat, SigmaX_hat, 0, f);
R_hat=r_hat0*eye(M);

fori=1:M

en

R_hat=R_hat+(triu(R_hat,1))";
Phi_hat = inv(R_hat)*r_hat ;
Sigma2_hat=(T-M)/(T-2*M-1)*(r_hat0-sum(Phi_hat.*r_hat));

);
c_hat=Psi*( circshift(Psi,[0 Lag]) )'/T;
c_hat0=Psi*Psi'/T ;
RAc= SigmaX_hat"2 * c¢_hat/c_hat0;

4. Lag Selection

LagSeIection.m

load Letters\Arial\Data\Noisy\TrainSeries
load Letters\Arial\Data\HubersParameter

M_Init=20; % Initial Model Order
Beta=0.2; % Balance factor in Loss Function
J=[];

:size(RLags, 1),end+1)=RLags; % since lag structuers have different sizes, gaps are filled by 0
M(i)=size(RLags,1); % Store the size of each lag structure
i

end
% save('Letters\Arial\Data\Noisy\RobustLags','J','M');

RobustLags.m

function RLags=RobustLags(Y,T,f,M,Beta)
Gama=1;
Jv=([1:M]);
CandidateLags=Jv;
N=size(Y,1);
for v=1:M-1
for k=1:N
if v==
Yk=Y(k,1:T(k));
SigmaX_hat(k)=1.483*median(abs(Yk-median(Yk)));
end
Yk=Y(k,1:T(k));
[Phi(:,k) SigmaZ2(k)]=RobustCSARModel(Yk/SigmaX_hat(k),Jv,f);

igmaZ2_tilda(v)=SigmaZz2;




LossFunction=Beta*log10(Phi.*2);
end
[u j]=min(LossFunction);
JVG(1))=0;
CandidateLags(1:M-v,end+1)=Jv;
clear Phi;
v
end
RFPE=SigmaZz2_tilda.*( 1 + Gama*([M:-1:2]+1)/sum(T) );
[u j]J=min(RFPE);
m=find(CandidateLags(:,j)>0);
RLags=CandidateLags(1:m(end),j);

5. Training and Test data generation
5.1. Generating Training and Test series

e This program generates clean Training and Test time series.

TSGenerator.m

Image(:,:,1)=~imread('Letters\BookAntiqua\G','bmp");
Image(:,:,2)=~imread('Letters\BookAntiqua\H','bmp');
Image(:,:,3)=~imread('Letters\BookAntiqua\l',/bmp');
Image(:,:,4)=~imread('Letters\BookAntiqua\J','bmp");

Ntrain=100; % Number of training data

AngleNo=76; % Number of angles for sampeling(it must be a multiple of 4)
ScaleFactor=round(unifrnd(70,130,[1 Ntrain]))/100; %Ilmages are scaled from 70% up to 130%
RotationAngles=randperm(360); %lmages are rotated from 0d up to 360d. For Ntrain > 360 another...
RotationAngles=RotationAngles(1:Ntrain);% ... random generator function must be used

C=size(Image,3); % Number of classes

Xt=[I;

for i=1:Ntrain
ScaledIim=imresize(Image,ScaleFactor(i));
RotatedScaledIm=imrotate(Scaledim,RotationAngles(i),'bicubic');

end
% save('Letters\BookAntiqua\Data\Clean\TestSeries','Xt','T")
% save('Letters\BookAntiqua\Data\Clean\SigmaX','SigmaX') % SigmaX may not be needed

e This program adds contamination to the clean time series.

DataContaminator.m

load Letters\Arial\Data\Clean\TrainSeries
%load Letters\Arial\Data\Clean\TestSeries

SigmaN=4;

k=12;

s=0.02;

% Notice! comment the specified lines when use this program for generating test data

NoisyData=zeros(size(Xt));

ContaminatedData=zeros(size(Xt));

for i=1:size(Xt,1)
for j=1:size(Xt,3)

X=Xt(i,1:T(i,j).j);




!yu_!at=me!|an!!!; % Comment

SigmaX_hat=1.483*median(abs(Y-Myu_hat)); % Comment
F(i,j)=max(abs((X-Myu_hat)/SigmaX_hat)); % Comment

A=[zeros(1,T(i,j)-fix(s*T(i,j))) sign(unifrnd(-1,1,[1 fix(s*T(i,j))]))];
A=A(randperm(T(i,j)));
SigmaX=sqrt(var(X));
Y=X+ N + k*SigmaX*A;
m=find(Y<0);
Y(m)=0;
ContaminatedData(i,1:T(i,j),j)=Y;
end
end
% Yt=NoisyData;
% save('Letters\Arial\Data\Noisy\TrainSeries','Yt','T");
% Yt=ContaminatedData;
% save('Letters\Arial\Data\Contaminated\TrainSeries','Yt','T");
% F=max(F); % Comment
% save('Letters\Arial\Data\HubersParameter','F'); % Comment

% Y1=Xt(i,1:T(i,j).j);

% Y2=NoisyData(i,1:T(i,j).j);

% Y3=ContaminatedData(i,1:T(i,j).j);
% stairs(Y1)

% figure,stairs(Y2)

% figure,stairs(Y3)
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5.2. Generating data for Dubois and Glanz approach

e This program generates Training or Test data for noise-free environment using CFARModel.m.
e  This program was used in section 3.

TrainDataGenerator.m

Image(:,:,1)=~imread('Letters\BookAntiqua\G','bmp");

Image(:,:,2)=~imread('Letters\BookAntiqua\H','bmp');
Image(:,:,3)=~imread('Letters\BookAntiqua\l','bmp");
Image(:,:,4)=~imread('Letters\BookAntiqua\J','bmp");

Ntrain=25; % Number of training data
M=2; % Model Order

otationAngles=randperm ; olmages are rotated from 0d up to . For Ntrain > 360 another...
RotationAngles=RotationAngles(1:Ntrain);% ... random generator function must be used

C=size(Image,3); % Number of classes
for i=1:Ntrain

train02(:,1,J)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 3);
Xtrain03(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 4);
XtrainO4(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 5);
Xtrain05(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 6);
Xtrain06(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 7);
Xtrain07(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 8);
Xtrain08(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]=CARModel(r_t , 9);
Xtrain09(:,i,j)=[Theta; Alpha/sqrt(Beta)];
[Theta, Alpha, Beta]|=CARModel(r_t , 10);
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Xtrain10(:,i,j)=[Theta; Alpha/sqrt(Beta)];
j
end
i
end

e This program generates Training and Test data for contaminated environment using CSARModel.m and
RobustCSARModel.m
e The robust part must be commented when non-robust data is desired.

DGDataGenerator.m

load Letters\Arial\Data\Contaminated\TrainSeries
% load Letters\Arial\Data\Contaminated\TestSeries
load Letters\Arial\Data\HubersParameter

M=5; % Full Model Order

% Notice! The robust part must be commented when non-robust data is desired
J=([1:M])’;
for i=1:size(Yt,1)
for j=1:size(Y1,3)
Y=Yt(i,1:T(i,j).);

% Non-Robust
[Phi_hat SigmaZ2_hat]=CSARModel(Y,J);

%

X(:,i,j)=[Phi_hat ; Myu_hat/sqrt(SigmaZ2_hat)];
end
end
% Xtrain=X;
% save('Letters\Arial\Data\Contaminated\RobustDGXtrain','Xtrain")

% Xtest=X;
% save('Letters\Arial\Data\Contaminated\RobustDGXtest','Xtest')

5.3. Generating data for Spectral function approach

e This program generates Training data for spectral approach wusing CSARModel.m and
RobustCSARModel.m
e  The robust part must be commented when non-robust data is desired.

SFArgumentsEstimator.m

load Aircrafts\Data\Contaminated\TrainSeries
load Aircrafts\Data\Contaminated\RobustLags
load Aircrafts\Data\HubersParameter

Phi_tilda=[];
SigmaZ2_tilda=[];

% Notice! The robust part must be commented when non-robust data is desired
for j=1:size(Yt,3);

!!Il:,l! !lgma!!“ =l!!!RModel(Y/SigmaX_hat,Jj);

% Robust
% SigmaX_hat=1.483*median(abs(Y-median(Y)));
% [Phi(:,i) SigmaZ2(i)]=RobustCSARModel(Y/SigmaX_hat,Jj,F(j));
end

Phi_tilda(1:size(Phi,1),j)=mean(Phi,2);
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SigmaZ2_tilda(j)=mean(SigmaZ2);
clear Phi
j
end
% save('Aircrafts\Data\Contaminated\NonRobustTrainSFArgs','Phi_tilda','Sigmaz2_tilda');

e This program generates Test data for spectral approach using CSARModel.m and RobustCSARModel.m
e  The robust part must be commented when non-robust data is desired.

SFArgumentsEstimator Test.m

load Aircrafts\Data\Contaminated\TestSeries
load Aircrafts\Data\Contaminated\RobustLags
load Aircrafts\Data\HubersParameter

Phi_hat=[];

SigmaZ2_hat=[J;
% Notice! The robust part must be commented when non-robust data is desired
for j=1:size(Yt,3);

Non-robust
igmaX_hat=sqrt(var(Y));
[Phi_hat(1:M(j),i,j) Sigmaz2_hat(i,j))=CSARModel(Y/SigmaX_hat,Jj);

% Robust
% SigmaX_hat=1.483"median(abs(Y-median(Y)));
% [Phi_hat(1:M(j),i,j) SigmazZ2_hat(i,j)]=RobustCSARModel(Y/SigmaX_hat,Jj,F(j));

end
j
end
% save('Aircrafts\Data\Contaminated\NonRobustTestSFArgs','Phi_hat','SigmaZz2_hat','T");

Classifiers

6.1. Bayes optimal classifier with Gaussian parametric estimation of PDF's

BayesClassifier.m

% Minimm error Bayes classifier
load Letters\Arial\Data\Contaminated\RobustDGXtrain
load Letters\Arial\Data\Contaminated\RobustDGXtest
%Xtrain(:,21:end,:)=[]; % Reducing the size of training set

[L Ntrain Cl=size(Xtrain);
Ntest=size(Xtest,2);
Pw(1:C)=1/C; % a priori class distr bution

[Myu,Sigma]=MLPdfEstimator(Xtrain);

for j=1:C
difference=Xtest(:,k,i)-Myu(:,1,j);
f_xk_wi(j)=exp(-0.5*difference’ * Sigmalnv(:,:,j) * difference) / const(j);
end
[m,J]I=max(Pw.*f_xk_w);
Confusion(i,J)=Confusion(i,J)+1;
end
end




Confusion=100*Confusion/Ntest;
AverageCorrect=sum( diag(Confusion) )/C

% Computing Classification Error (optional!)
% Error=zeros(C,C);
% for k=1:Ntrain

%  fori=1:C

% for j=1:C

% difference=Xtrain(;,k,i)-Myu(:,1.j);

% f_xk_w(j)=exp(-0.5*difference' * Sigmalnv(:,:,j) * difference) / const(j);
% end

% [m,J]=max(Pw.*f_xk_w);

% Error(i,J)=Error(i,J)+1;

% end

% end

% Error=(Error-diag(diag(Error)))/Ntrain;
% AveragePrError=sum(sum(Error))/C
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MLPdfEstimator.m

or k=1:Ntrain
Sigma(:,:,i)=Sigma(:,:,i) + (Xtrain(:,k,i)-Myu(:,1,i)) * (Xtrain (:,k,i)-Myu(:,1,i))" ;
end

end
Sigma=Sigma/(Ntrain-1);

6.2. Linear classifier based on L(L-1)/2 hyper planes

L L 1LinearClassifier.m

%Linear classifier based on L(L-1)/2 hyperplanes
load Aircrafts\Data\Clean\Dubois_Glanz\Xtrain05
load Aircrafts\Data\Clean\Dubois_Glanz\Xtest05
Y% Xtrain(:,11:end,:)=[];

[L Ntrain Cl=size(Xtrain);

Ntest=size(Xtest,2);

Pw(1:C)=1/C; % A priori class distribution
Tolerance=0.01; % Accuracy of W

k=1;

ones(1,Ntest,C);Xtest];
fori=1:.C
g_x=W"* Xtst(:,:,i);
[Posl PosK]=find(g_x >= 0);
[Negl NegK]=find(g_x < 0);
rowP=Mapl(Posl);
columnN=MapJ(Negl);
VotesMat=zeros(C,Ntest);
for k=1:size(Posl)
VotesMat(rowP(k),PosK(k))=VotesMat(rowP(k),PosK(k))+1;
end
for k=1:size(Negl)
VotesMat(columnN(k),NegK(k))=VotesMat(columnN(k),NegK(k))+1;
end
[MajorityVote,ClassNo]=max(VotesMat);
ClassNo(find(MajorityVote==1))=C+1;
for j=1:Ntest




Confusion(i,ClassNo(j))=Confusion(i,ClassNo(j))+1;

end
end
Confusion=100*Confusion/Ntest;
AverageUnKnown=sum(Confusion(:,C+1))/C
temp=Confusion;
temp(:,C+1)=[];
AverageCorrect=sum( diag(temp) )/C
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LinearSeparator.m

function [W]=LinearSeparator(Class1,Class2,Tolerance)
[L N1]=size(Class1);

N2=size(Class2,2);

Z=([ones(1,N1) -ones(1,N2);Class1 -Class2])’;
Myu1=sum(Class1,2)/N1;
Myu2=sum(Class1,2)/N2;

%lInitial Values -------------

Bt=rand(N1+N2,1);

w0=0.5;

Wit=[wO0;(Myu1-Myu2)];

Ro0=0.01;

0,

(]

error=100;

6.3. Spectral classifier

e In this program lag selection is not employed in the test set.

SpectralClassifier.m

load Aircrafts\Data\Contaminated\NonRobustTrainSFArgs
load Aircrafts\Data\Contaminated\NonRobustTestSFArgs

load Aircrafts\Data\Contaminated\RobustLags

L=20; % Limmiting frequency to Landa=2*pi*L/100

load Letters\Arial\Data\Clean\RobustTrainSFArgs

load Letters\BookAntiqua\Data\Clean\RobustTestSFArgs

load Letters\Arial\Data\Noisy\RobustLags

C=size(Phi_hat,3); % Number of classes
N=size(Phi_hat,2); % Number of test data in each class

r=1:

f_tilda=Sigmaz2_tilda(r) * g(Phi_tilda(1:M(r),r), Landa, J(1:M(r),r));
dw_tilda_hat=sum( h( f_tilda./f_hat ) ) / size(Landa,2);
dw_hat_tilda=sum( h( f_hat./f_tilda ) ) / size(Landa,2);;
Dw_bar(r)= dw_tilda_hat + dw_hat_tilda;
end
[u I]=min(Dw_bar);
Confusion(k,l)=Confusion(k,l)+1;
end
k
end
AverageCorrect=mean(diag(Confusion))
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e In this program lag selection is employed in the test set.

SpectralClassifierWithLS.m

load Aircrafts\Data\Contaminated\RobustTrainSFArgs

load Aircrafts\Data\Contaminated\RobustLags

load Aircrafts\Data\HubersParameter

load Aircrafts\Data\Contaminated\TestSeries

L=20; % Limmiting frequency to Landa=2*pi*L/100
M_Init=30; % Initial Model Order(for lag selection in test data)
Beta=0.2; % Balance factor in Loss Function( /)

C=size(Yt,3); % Number of classes

N=size(Yt,1); % Number of test data in each class

Confusion=zeros(C,C);
g=inline('1./(2*pi*(abs(1-sum((Phi_tilda*ones(1,size(Landa,2))).*exp(-i*J*Landa)))).*2)",'Phi_tilda','Landa’,'J");
h=inline('(x-1).2','x");

% Non-Robust
% SigmaX_hat=sqrt(var(Y));

SigmaZ2_hat * g(Phi_hat, Landa, Lags);
orr=1:C
f_tilda=Sigmaz2_tilda(r) * g(Phi_tilda(1:M(r),r), Landa, J(1:M(r),r));
dw_tilda_hat=sum( h( f_tilda./f_hat ) ) / size(Landa,2);
dw_hat_tilda=sum( h( f_hat./f_tilda ) ) / size(Landa,2);;
Dw_bar(r)= dw_tilda_hat + dw_hat_tilda;
end
[u I]=min(Dw_bar);
Confusion(k,l)=Confusion(k,l)+1;
end
k
end
AverageCorrect=mean(diag(Confusion))

Evaluating the robust parameter estimation algorithms through spectral functions

e  This program is used in section 4.5.1 to estimate the spectral functions shown in Figs. 14 and 15.

e It must be noted that here we use the lag structure obtained for noisy data (k=0) for contaminated data
(k=12) too, as we want to examine only the performance of robust parameter estimation procedure
(section 4.2)

SFTest.m

load Aircrafts\Data\Noisy\RobustTrainSFArgs
Phi_tilda1=Phi_tilda;
SigmaZ2_tilda1=SigmaZ2_tilda;

load Aircrafts\Data\Contaminated\TrainSeries
load Aircrafts\Data\Noisy\RobustLags

load Aircrafts\Data\HubersParameter

Phi_tilda2=[];
SigmaZ2_tilda2=[];
for j=1:size(Yt,3);

Ji=J(1:MG).);
for i=1:size(Yt,1)
Y=Yt(i,1:T(,j).j);

% Non-Robust




%
%

SigmaX_hat=sqrt(var(Y));
[Phi(:,i) SigmaZ2(i)]=CSARModel(Y/SigmaX_hat,Jj);

igmaZ2_tilda2(j)=mean(SigmaZ2);

clear Phi

J
end

% Once the parameters have been estimated all the lines above can be commented
% Spectral function estimation and show
g=inline('1/(2*pi*(abs(1-sum(Phi_tilda.*exp(-i*Landa*J))))*2)",'Phi_tilda','Landa','"J");
k=8; % Number of class being tested: 1:Buccaneer 2:F16 ... 8:Starship
Jk=J(1:M(k),k);

Phik1=Phi_tilda1(1:M(k),k);
Sigk1=Sigmaz2_tilda1(k);
Phik2=Phi_tilda2(1:M(k),k);
Sigk2=Sigmaz2_tilda2(k);

Landa=[0:2*pi/100:2*pi*50/100];

L=[1:51];

for i=1:size(Landa,2)
f1(i)=Sigk1*g(Phik1,Landa(i),Jk);
f2(i)=Sigk2*g(Phik2,Landa(i),Jk);

end

plot(L,f1,-,L,f2,"r');

xlabel('L (STARSHIP)');

ylabel('SPECTRAL FUNCTION');
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